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Abstract
Background: Ecological and genomic attributes of populations can provide two or-
thologous perspectives on the biological profiles associated with local adaptation. 
The ability of organisms to track suitable habitats (ecological adaptability) and of pop-
ulations to shift allele frequencies (adaptive potential) are prerequisite for population 
sustainability.
Aims: Many	 contemporary	 populations	 are	 threatened	 by	 habitat	 loss	 (ecological	
vulnerability) and a lack of adaptive potential (evolutionary vulnerability). Technical 
advances provide new opportunities to address these challenges in biological con-
servation: Future habitat shifts can be predicted by ecological niche modelling and 
adaptive genetic diversity can be discerned using genome sequence data. Together, 
these two approaches illuminate the local adaptation profile and help identify the en-
vironmental and genomic conditions that should maximize evolutionary fitness.
Materials and Methods: Here, we reviewed the primary literature to identify key 
studies that utilize both whole- genome resequencing (WGR) and ecological niche 
modelling	(ENM)	in	an	effort	to	envisage	future	research	directions	that	may	benefit	
conservation efforts.
Results: We	identified	ways	to	integrate	different	approaches,	such	as	ENM-	informed	
adaptive	genomics	and	adaptive	genomics-	informed	ENMs,	that	can	be	used	to	delin-
eate and conserve local adaptation profiles.
Discussion: Integrative approaches can identify adaptive characteristics, vulnerable 
populations subject to environmental changes, and the patterns of local adaptation 
from geographic and genomic analyses. We discuss future research directions, limita-
tions and their potential solutions with suggestions for collaborative workflows.
Conclusion: The	integration	of	WGR	and	ENM	is	promising	with	their	continuous	ad-
vancement.	An	integrative	approach	can	be	used	to	evaluate	eco-	evolutionary	attrib-
utes, at both organismal and molecular levels, that can be used to help conserve local 
adaptation profiles.
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1  |  THE USE OF GENOMIC S AND NICHE 
MODELLING TO CONSERVE PROFILES OF 
LOC AL ADAPTATION

The conservation of threatened and endangered species requires 
that viable populations maintain suitable habitat and genetic/ge-
nomic diversity in the face of environmental flux. Revealing the dis-
tribution of adaptive genomic variants across space and time (i.e., 
adaptation profile) is particularly critical for understanding popu-
lation persistence in the face of environmental perturbations (e.g., 
emerging infectious diseases, climate change, habitat fragmentation, 
etc.).	Adaptation	profiles	can	form	the	scientific	foundation	for	man-
agement efforts, such as prioritizing geographic regions to conserve 
or identifying the best source populations for assisted migration 
efforts. Furthermore, associations between genotype and environ-
ment can highlight both genomic and geographic regions that are 
worthy of further investigation as potential drivers of local adapta-
tion (Lasky et al., 2023).	Although	it	is	much	easier	to	demonstrate	
correlation than causation, the still- emerging fields of conservation 
genomics and niche modelling are now intersecting and have great 
synergistic potential to help provide a detailed roadmap for future 
mechanistic studies into adaptation profiles.

Technological advances over the last decade have resulted in the 
widespread adoption of population whole- genome resequencing 
(WGR) approaches, whereby the entire genomes of multiple indi-
viduals are sequenced for comparison to a representative reference 
sequence of the species and to each other. For economic reasons, 
WGR approaches are often conducted at low coverage in non- model 
species, and in this review, we refer primarily to such low- coverage 
WGR datasets. With the development of novel bioinformatics tools, 

falling	 prices	 for	 DNA	 sequencing,	 and	 enhanced	 computing	 in-
frastructure, large WGR projects are now feasible even in species 
with genomes >1 Gb	 (e.g.,	 Andrews	 et	 al.,	 2023;	 Mathur,	 Mason,	
et al., 2023;	Mathur,	Tomeček,	et	al.,	2023). Lou et al. (2021) showed 
that the sequencing price of low- coverage WGR projects is compa-
rable with that of reduced representation sequencing studies (RRS; 
e.g.,	genotyping-	by-	sequencing	and	restriction	size-	associated	DNA	
sequencing). The number of such WGR projects is growing rapidly 
relative to RRS for many reasons (Figure 1	and	Appendix	S1 for de-
tails; DeWoody et al., 2022).

When integrating genomic and environmental variation, we 
think WGR is the most desirable approach to characterize adap-
tive profiles. This is because of its ability to identify all manner of 
genomic variants, from single nucleotide polymorphisms (SNP; ge-
netic	variants	at	a	 single	base	position	 in	 the	DNA	sequence	such	
as	an	adenosine,	“A,”	or	a	thymine,	“T”)	to	structural	variants.	WGR	
can be used to detect large genomic variants and patterns of link-
age	disequilibrium	 (e.g.,	 using	Manta	 (Chen	et	 al.,	 2016) and Delly 
(Rausch et al., 2012) for structural variants; ngsLD (Fox et al., 2019) 
and PLINK (Chang et al., 2015) for linkage; see also Liu et al., 2023). 
Often,	such	variants	are	associated	with	local	adaptation	(Akopyan	
et al., 2022;	Mérot	et	al.,	2023; Wilder et al., 2020). The increased 
statistical power associated with the vast number of WGR loci is 
another critical benefit for population genetic analyses (e.g., effec-
tive population sizes, selection signals and functional connectivity) 
as WGR leverages a dense array of markers spread across an entire 
genome whereas RRS typically surveys <5%	of	a	genome	(Davey	&	
Blaxter, 2010).	 Although	 inexpensive,	 the	 sparse	 genomic	 cover-
age of RRS undermines its value, especially in selection scans since 
there is no direct way to capture signals of adaptation on particular 

K E Y W O R D S
adaptive evolution, gene–environment interactions, habitat suitability modelling, landscape 
genomics, natural selection, species distribution modelling

F I G U R E  1 Trends	in	the	number	of	
published articles used Ecological Niche 
Modelling	(ENM;	yellow	line),	Reduced	
Representation Sequencing (RRS; purple 
bar), and whole- genome resequencing 
(WGR; green bar) from 2010 to 2022. 
ENM	and	WGR	studies	continue	to	
increase at a similar rate, whereas RRS 
studies appear to be approaching a 
plateau.
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genomic regions (Lou et al., 2021; Lowry et al., 2017). For example, 
Mathur,	Mason,	et	al.	(2023)	and	Mathur,	Tomeček,	et	al.	(2023) have 
used WGR data to quantify both genetic load (the burden of dele-
terious alleles) or genetic thrust (the benefit of adaptive alleles) by 
leveraging annotations of protein- coding genes and their biochem-
ical properties to categorize alleles into function bins that can be 
compared	 across	 populations.	 Annotated	 reference	 genomes	 and	
WGR datasets can be leveraged to identify genomic regions con-
taining elevated (or reduced) variation that are indicative of strong 
selection (Hohenlohe et al., 2021). WGR analyses can focus entirely 
on such genic regions to more accurately reflect the specific nucleo-
tide substitutions that underlie adaptive variation, or focus on gene 
deserts (i.e., intergenic regions) that are more prone to stochastic 
genetic drift (and less to natural selection) as a product of population 
demography. Therefore, unlike RRS studies, WGR studies can reveal 
both the patterns and processes associated with the generation and 
maintenance of adaptive variation in wild organisms.

Ecological	niche	modelling	(ENM),	in	the	strictest	sense,	can	be	
an umbrella term for techniques used to characterize ecological 
niches, suitable habitats, and either potential or actual distribu-
tions (Peterson & Soberón, 2012).	ENM	as	an	analytical	 technique	
is also termed as habitat suitability modelling or species distribu-
tion modelling, depending on the ultimate objective (Peterson & 
Soberón, 2012).	 Herein,	 we	 refer	 to	 ENM	 as	 a	 general	 term	 that	
can encompass both habitat suitability and species distribution 
modelling.	ENM	has	been	broadly	used	in	ecology	and	evolutionary	
studies, and it is frequently used to provide a quantitative basis for 
conservation	practices	(Araújo	et	al.,	2019; Franklin, 2010; Peterson 
et al., 2011).	 The	ENM	approach	 typically	 builds	 upon	 the	 known	
geographic range of a species and the associated environmental 
conditions	 to	 quantify	 habitat	 requirements.	 ENM	 is	 commonly	
used to identify the potential distribution of a species given spatial 
and	 temporal	 constraints.	As	we	usually	do	not	have	 reliable	data	
on the absence of species (Gu & Swihart, 2004),	ENM	predictions	
are often based on pseudoabsence data and usually interpreted as 
the relative probability of a species' occurrence or the relative suit-
ability	of	a	particular	habitat	(Merow	et	al.,	2013). Ecological niche 
modelling provides critical insights into habitat suitability over time 
(e.g.,	Mendoza-	González	et	al.,	2013) and these models can then be 
associated with studies of genetic/genomic diversity (GD) across the 
landscape (e.g., Duncan et al., 2015). For example, theory predicts 
that habitat that has long supported large populations will harbour 
more GD than geographically restricted or isolated habitats (e.g., is-
lands) that can only support small populations (Reed, 2004).

The intersection of conservation genomics and habitat model-
ling has already provided important insights into adaptation profiles. 
For	 example,	 recent	 synergistic	 studies	 that	 combined	 ENM	 and	
WGR have yielded insights into the fluctuation of species' distribu-
tion over time compared to their historical demographic trajectories 
(e.g., Brüniche- Olsen et al., 2021), the ecological niches of genetic 
lineages	(genomics-	informed	ENM;	Hudson	et	al.,	2021), and to infer 
habitat corridors for gene flow (Shryock et al., 2021). These three 
examples	are	all	based	on	 “neutral”	genomic	approaches,	meaning	

that their inferences were based on genome- wide outcomes primar-
ily determined by demographic events rather than natural selection. 
However,	a	significant	advantage	of	combining	ENM	and	WGR	re-
sides in the detection of locally adapted genes, species, or popu-
lations because the analyses complement each other. For example, 
many	genomic	methods	such	as	Genotype-	Environment	Association	
(GEA;	Lasky	et	al.,	2023) and genomic offset (Rellstab et al., 2021) 
are dependent on statistical relationships (linear, logistic, or curvilin-
ear,	etc.)	at	the	“gene”	level	to	identify	potential	GEAs.	In	contrast,	
ENM	is	based	on	environmental	associations	at	 the	 “individual”	or	
“population”	 level,	 regardless	 of	 the	 implicit	 complexity	 of	 them.	
Thus,	“ENM-	informed	genomics”	should	be	powerful	in	the	context	
of	adaptive	genomics,	just	like	“genomics-	informed	ENM”	in	the	con-
text of niche modelling.

Historically,	ENM	has	been	integrated	with	RRS	data	in	studies	of	
local adaptation (Razgour et al., 2018, 2019). RRS approaches have 
provided key insights and are especially valuable for species with 
gigantic genomes (e.g., salamanders and ferns). Here we exploit the 
rising number of WGR studies to demonstrate why and how WGR 
should	be	integrated	with	ENM	with	particular	focus	on	the	ability	
of WGR data to illuminate adaptive genetic characteristics. Efforts 
to	 integrate	 genomics	 and	 ENM	 are	 accelerating	 (e.g.,	 the	 recent	
WIGGIS workshop, https:// wiggis. eu/ ) as WGR becomes more af-
fordable (Wetterstrand, 2021)	 and	 as	 ENM	 applications	 broaden	
(Peterson et al., 2022). Like others (e.g., Waldvogel et al., 2020), we 
think that comprehensive, integrative studies of individual genomes 
and their distributions in space and time have great potential to iden-
tify adaptation profiles and help guide conservation efforts. In this 
paper,	we	have	reviewed	recent	studies	that	have	utilized	both	ENM	
and adaptive/structural genetic variation to characterize local adap-
tation (a detailed description of our overall review process and the 
exact	search	terms	we	used	are	in	Appendix	S1). We aim to bridge 
the current gap between the analysis of WGR data and the applica-
tion	of	ENM,	with	particular	emphasis	on	the	conservation	of	local	
adaptation profiles. Both fields are replete with technical terms, so 
we provide a brief glossary in Box 1. [Throughout this paper, we use 
the	term	“population”	to	refer	to	a	group	of	entities	(individuals	of	
DNA	samples,	individuals	with	geocoordinates,	or	individuals	in	the	
wild, etc.) that share similar genetic, ecological, or geographic char-
acteristics that make them suitable to analyse collectively. We use 
the	 term	 “cluster”	 to	denote	 a	 collection	of	 “populations”	 that	 are	
characterized by their ecological or genetic similarities, whereas we 
use	the	term	“lineage”	when	a	historical	context	is	associated	with	
a genetic cluster.] Our paper is both retrospective and prospective, 
as we highlight empirical examples from the recent literature and 
where we think future studies could prove fruitful.

2  |  APPROACHES THAT INTEGR ATE WGR 
AND ENM

Whole- genome resequencing data can be united with ecological 
niche modelling in many ways. The general workflows of WGR and 
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BOX 1 Glossary.

Adaptive Capacity: The general ability of a species or population to respond to environmental change by phenotypic plasticity, dis-
persal, or genetic diversity.

Adaptive Potential: The potential ability of species or population to adapt to selective forces through heritable changes.

Balancing Selection:	A	type	of	selection	in	which	genetic	variation	is	elevated	and	maintained	longer	than	neutral	expectation	due	to	
heterozygote advantage, frequency- dependent selection, spatiotemporally varying fitness, etc.

Ecological Adaptability: The potential ability of species or population to adapt by modifying their ecological characteristics such as 
distribution or behaviours.

Ecological Vulnerability: The decrease in future habitat suitability (for a given species or population) as estimated by ecological niche 
modelling.

Ensemble Modelling:	A	methodological	framework	whereby	potential	outcomes	are	predicted	by	many	different	models/algorithms	
or by many different datasets.

Evolutionary Rescue:	A	strategy	or	phenomenon	where	population	growth	is	recovered,	and	extinction	risks	are	mitigated	by	aug-
mented genetic diversity, usually from translocated or dispersed individuals from genetically healthy populations to genetically de-
pauperated populations.

Evolutionary Vulnerability: The decrease in adaptability often because of limited adaptive genetic diversity (genomic vulnerability).

Fundamental Niche: The set of abiotic conditions under which a species exists.

Genetic Load: The decrease in fitness of a population due to the accumulation and expression of deleterious mutations, most realized 
in inbred populations.

Genetic Thrust: The increase in fitness of a population due to the accumulation and expression of advantageous mutations.

Genomic Offset: The mismatch between the current and future adaptive genomic composition required due to environmental condi-
tions, a measure of genomic vulnerability.

Genotype- Environment Interaction: Differential responses of various genotypes in various environments, often studied via common 
garden (i.e., transplant) experiments.

Genotype Likelihood:	The	probability	of	observing	a	particular	genotype	at	a	given	nucleotide	site	(e.g.,	G/A	heterozygote	or	GG	ho-
mozygote), incorporates statistical uncertainty from diverse error sources, such as sequencing and mapping errors.

ENM Hindcasting/Forecasting:	A	practice	in	ENM	that	projects	a	calibrated	ecological	niche	model	to	historic	or	future	environmental	
conditions.

Incomplete Lineage Sorting: Persistence of ancestral trans- species polymorphisms due to random genealogical processes such 
that gene trees do not correspond to species trees, more likely observed in historically large populations than in historically small 
populations.

Introgressive Hybridization: Incorporation of alleles from one species into the gene pool of another species via hybridization and sub-
sequent backcrossing.

Landscape Genetics: The scientific discipline that integrates population genetics, landscape ecology, and spatial statistics to identify 
and quantify landscape features that impede/facilitate gene flow or affect microevolutionary processes, can progress into landscape 
genomics with the use of genome- wide markers.

Linkage Disequilibrium: Often abbreviated LD, the non- random association between alleles at different loci; LD is often due to close 
physical proximity of genes, random genetic drift, or natural selection that favours a coadapted gene or allele complex.

Pangenome: The complete gene pool (i.e., collection of all genomic variants) of an entire species, population segment, or phylogenetic 
lineage.

Raster: Spatial data defined as an array of grid cells with attribute values.

Realized Niche: The subset of ecological conditions that permit a species to exist in the presence of biotic interactions and abiotic 
restrictions, a segment of the fundamental niche which represents the entire set of abiotic ecological conditions in which a species 
can persist.
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ENM	are	each	summarized	in	Figure S1. These two approaches can 
be merely combined (i.e., comparing independent findings of two ap-
proaches) or they can be unified (i.e., findings from one approach can 
provide a base for the other) as shown in Figure 2. Here we focus 
on the adaptive aspects of genomics that can be inferred only by 
WGR. For detailed explanations of the workflows and practical ap-
proaches, see Boxes S1, S2 and Tables S1–S3.

2.1  |  Combining independent ENM and WGR 
results to identify local adaptation

Most	 simply,	 a	 species'	 adaptive	 genetic	 variation	 and	 ecological	
niche can be analysed independently in parallel and then combined 
for interpretation (Figure 2a).	The	two	approaches	of	WGR	and	ENM	
are complementary as they assess both ecological and evolutionary 
facets of conservation which together contribute to a population's 
adaptive capacity for environmental change (Seaborn et al., 2021). 
Both	ENM	and	WGR-	based	approaches	assess	environmental	 fea-
tures as independent variables to identify important predictors that 
explain a species' eco- evolutionary characteristics (i.e., ecological 
requirements or adaptive loci). One can then interpret the results 

from the viewpoint of local adaptation at different scales or under 
different environmental conditions. For example, key environmental 
variables that explain the geographic distribution of distinct ginkgo 
tree lineages are associated with putative functions of positively se-
lected genes (Zhao et al., 2019), illustrating that mechanistic insights 
into adaptive profiles can be inferred from combined analyses.

The future trajectory and adaptive capacity of populations under 
environmental	change	can	also	be	inferred	by	combining	ENM	and	
WGR data. For example, Han et al. (2021) evaluated thermal ad-
aptation of a marine fish, the Japanese whiting (Sillago japonica), in 
China and Japan. Comparing genomes of warm-  and cold- adapted 
populations revealed temperature- driven parallel adaptation among 
isolated warm- temperature populations that shared adaptive genes 
and	structural	variants.	At	 the	macro	scale,	 the	adaptively	diverse	
Chinese group exploited warmer temperatures and expanded their 
habitats	 under	 future	 climate	 ENMs,	 in	 contrast	 to	 the	 Japanese	
group. Similarly, Liu (2022) forecasted future interactions of black 
cottonwood (Populus trichocarpa) populations. Selective sweep 
scans for each population, ecological niche models under climate 
change, and genetic cluster distribution models (Jay et al., 2015) 
collectively predict that northward colonization will ransack the 
current spatial organization of cottonwoods and that the population 

Selective Sweep:	An	evolutionary	process	by	which	a	beneficial	allele	increases	its	frequency	while	concomitantly	reducing	genetic	
variation of linked loci.

Spatial Extent:	A	geographic	range	defined	by	two-	dimensional	geocoordinates,	onto	which	niche	models	are	fitted	and	predicted.

Spatial Resolution: The dimension of the raster grid cells that determines the precision of spatial representation.

Standing Genetic Variation: Preexisting variation in a gene pool.

Structural Genetic Variation:	Often	called	SVs	for	structural	variants,	these	are	large	polymorphisms	(often	defined	as	≥50	base	pairs	
in length) that include insertions, deletions, inversions, translocations, and duplications, that may produce copy number variants.

Temporal Resolution: Temporal scales of species occurrence and environmental datasets.

BOX 1 (Continued)

F I G U R E  2 A	general	framework	for	integrating	whole-	genome	resequencing	(WGR)	and	ecological	niche	modelling	(ENM).	Section	labels	
in	the	“Integration”	column	are	referenced	at	corresponding	places	in	the	main	text	(e.g.,	Figure 2a). “+”	indicates	combination	of	the	two	at	
the interpretation step (i.e., after independent analyses), “×”	indicates	unification	of	the	two	during	the	analysis	step,	and	“→”	indicates	the	
influence of the left factor on the right one.
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with the greatest adaptive potential may be key to cope with future 
climate change. Thus, these studies highlight the importance of both 
adaptive potential and environmental conditions in conservation 
planning.

Independent	analyses	of	ENM	and	WGR	can	be	further	devel-
oped to assess ecological vulnerability and evolutionary vulner-
ability,	 respectively,	 by	 ENM	 forecasting	 and	 analyses	 of	 genomic	
offset. Ecologically vulnerable populations and genomically vul-
nerable populations may not coincide geographically, as in DeSaix 
et al. (2022) and Tournebize et al. (2022), illustrating the need for 
both genomic and ecological vulnerability assessments. This is be-
cause evolutionary vulnerability evaluates the required adaptive 
potential for persistence at the organism level, whereas ecological 
vulnerability evaluates the availability of habitats to persist at the 
landscape level—both of which are obviously critical to population 
productivity.

2.2  |  Indices that integrate WGR-  and 
ENM- based results

A	more	 sophisticated	 approach	 to	 characterizing	 profiles	 of	 local	
adaptation	 is	 to	 integrate	 WGR-		 and	 ENM-	based	 results	 into	 an	
index for future persistence and adaptive capacity (Figure 2b). The 
integrative indices of genomic and ecological vulnerability should be 
most useful when there is a contrasting pattern between the two 
vulnerability assessments. Chen et al. (2021, 2022) implemented 
this approach and demonstrated its merit with two independent 
studies; one predicted a pest moth's rise or fall and the other as-
sessed the conservation of two threatened birds. They calculated 
genomic	offset	using	adaptive	SNPs	 (identified	by	GEA)	and	mod-
elled habitat suitability of the species. Results demonstrated that 
regions of higher genomic risk and regions of higher habitat reduc-
tion	did	not	correspond,	so	they	developed	an	“eco-	genetic	 index”	
(or	“genome-	niche	index”)	that	multiplied	genomic	offset	and	niche	
suitability change. Based on the index values, Chen et al. (2021) pre-
dicted that most moth populations should undergo low to moderate 
eco- genetic interruptions, which means that they are unfortunately 
likely to maintain their pest status for the foreseeable future. Chen 
et al. (2022), on the other hand, compared the index values among 
three locally adapted populations and the populations with the low-
est genome- niche index value were regarded as potential donors 
for evolutionary rescue. Together, these two studies illustrate the 
potential	power	of	integrating	ENM	and	WGR	to	produce	novel	in-
sights that are relevant to conservation efforts.

2.3  |  Reinforcing evidence of local adaptation by 
unified analyses of ENMs and WGR

One	 approach	 to	 unite	 ENM	 with	 WGR	 is	 to	 unify	 micro-	scale	
genomics	results	with	macro-	scale	ENM	results	at	the	analysis	step	
(Figure 2b).	The	analytical	unification	of	ENMs	and	WGR	may	create	

a powerful synergy that reciprocally reinforces the evidence of local 
adaptation beyond a mere comparison of the two independent re-
sults at the interpretation step. One study by Hodel et al. (2018) 
evaluated the statistical correlation among allele frequencies of can-
didate genes, habitat suitability values, and individual environmental 
variables. Their results were unclear, perhaps due to small sample 
sizes, but we think their general approach has potential merit and 
should be explored further in future studies.

Many	studies	have	directly	unified	WGR	and	ENM.	For	example,	
Tremble et al. (2023)'s comparative genomics study of the mush-
room Boletus edulis demonstrated that a unification of WGR and 
ENMs	can	reveal	introgression	and	local	adaptations	even	in	species	
with high dispersal capacity. Introgression and genomic divergence 
analyses among geographically structured lineages found that high 
levels of ancient genomic divergence were retained even in the face 
of considerable introgression, suggesting local adaptation. The au-
thors modelled the ecological niche of each lineage, buttressing the 
genetic results, where strong geographic structure and differenti-
ated local adaptation among lineages were validated by limited niche 
overlap.

In	 some	cases,	 however,	 the	unification	of	WGR	and	ENM	 re-
veals that introgression appears to have enhanced local adaptation 
(as	in	Morales-	Cruz	et	al.,	2021). Introgressive hybridization among 
distinct species could arrange adaptively advantageous combi-
nations of alleles. Comparative genomics can then be applied to 
identify introgressed regions that are retained in multiple species, 
the underlying reasons, and the potential function of these regions 
with respect to local adaptation. To infer whether formerly sym-
patric pairs of species are sharing suspected genomic regions of 
adaptive	 introgression,	 species-	specific	ENMs	 for	 the	present	 and	
the	past	can	be	modelled	and	compared.	Similarly,	unifying	ENMs	
and WGR can identify complicated local adaptation derived from 
polyploidization- based introgression. Polyploidization creates new 
combinations of alleles that can unlock new ecological niches, but in 
return for adaptive fitness at the original, optimal niche. See Napier 
et al. (2022) for a discussion of this selective trade- off.

On the other hand, Luqman et al. (2023) introduced an interesting 
novel approach to trace the history of local adaptation—“hindcast-
ing	genomic	offset,”	or	“glacial	genomic	offset.”	It	 is	different	from	
the usual genomic offset (which is focused on the predicted future 
change in genomic composition) and can trace the historic change 
in	 genomic	 composition.	With	 hindcasting	 ENMs,	 the	 hindcasting	
genomic offset can infer how range shifts shape clines of local ad-
aptation. The concept is grounded on the expectation that popu-
lations in different environments harbour different genotypes and 
that heterogeneous landscapes effectively filter, or sieve, genotypes 
during	range	shifts.	The	process	of	hindcasting	ENMs	to	a	series	of	
environmental conditions in the past can estimate the changes of 
potential habitat suitability and reconstruct the range shifts of each 
lineage from historical refugium to the present habitats. Hindcasting 
genomic offset can be calculated between the two locations. Higher 
hindcasting genomic offset implies the present habitats are more 
dissimilar from the ancestral environments whereas lower values 
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indicate greater environmental similarity over time. Hindcasting ge-
nomic offset may be positively correlated with increased derived al-
lele frequencies, which can further bolster inferences of range shift 
imprints and spatiotemporal selection. This process can help identify 
the strength and profile of local adaptation in the current range that 
is due to the historical range shift.

2.4  |  ENM- informed adaptive genomics

Genomics	can	 inform	 the	ENM	approach	by	discriminating	among	
independent genetic entities, a procedure known as genomics- 
informed	ENM	(Ikeda	et	al.,	2017;	May	et	al.,	2011).	However,	ENM	
can also inform genomic analyses (Figure 2c).	For	example,	ENM	can	
identify key environmental variables which can be used for adaptive 
genomic analyses or establish ecological clusters as informative pri-
ors	for	Bayesian	analyses	of	spatial	genetic	structure.	Alternatively,	
habitat suitability itself (based on a robust modelling process; see 
Box S2) can be incorporated as a variable to detect adaptive genes. 
Bellis et al. (2020)	did	so	by	using	ENM	habitat	suitability	score	of	a	
parasitic weed (Striga hermonthica) as a single predictor variable in a 
GEA	of	its	host	sorghum	landraces.	They	found	that	structural	vari-
ants (detectable only with WGR data) yielded practical insights into 
the spatiotemporal balancing selection that has shaped this weed, 
which	devastates	human	food	crops	in	sub-	Saharan	Africa.

Essential	 environmental	 variables	 identified	 from	 ENM	 may	
have shaped the local adaptation landscape, assuming long- term 
static environmental conditions drive selective pressure (Gienapp 
et al., 2014). Key environmental variables can be identified a priori 
(i.e.,	 before	 genomic	 analyses)	 from	 ENMs	 specific	 to	 each	 geo-
graphic population that explain the environmental heterogeneity 
among them (Gheyas et al., 2021; Lu & Lee, 2020). Populations at 
each extreme environmental condition can be grouped and com-
pared for each key variable in genomic analyses. Effect sizes of dif-
ferent genetic variants (i.e., standing variation or new mutations) 
can be examined and compared in the context of local adaptation 
(Gheyas et al., 2021). Several different analyses of selection can be 
further employed to detect putative genetic variants/sweeps, and 
their biological functions or association with environmental condi-
tions. For example, gradient forest analysis (Ellis et al., 2012), which 
estimates the explanatory power of environmental gradients against 
allele frequency variation, indicates that both new mutations and 
populations subject to drastic precipitation shifts are especially vul-
nerable to climate change (Lu & Lee, 2020).

The delineation of ecology- driven genetic clusters among geo-
graphic populations has great advantages over ordinary neutral 
genetic clusters (e.g., those identified by a typical genetic ancestry 
admixture analyses) because they presumably reflect population 
structure	shaped	by	local	adaptation.	ENM-	based	niche	similarity	can	
be used to cluster distinct ecotypes among geographic populations. 
These	ENM-	defined	ecotypes	can	underpin	downstream	analyses	to	
detect	selective	sweeps.	A	GEA	to	detect	environment-	associated	
SNPs of the sweep regions can identify major environmental 

variables. Using this approach, Vallejo- Trujillo et al. (2022) found that 
(1) SNPs associated with all major environment variables fell within 
sweep	regions	of	most	ENM-	defined	ecotypes	and	(2)	some	sweep	
regions included SNPs associated with several environmental vari-
ables, indicating that different environmental drivers (and their inter-
actions) collectively contributed to each ecotype and some genomic 
regions.	The	use	of	ENM-	defined	ecotypes	is	desirable	in	the	con-
text	of	GEAs	since	ENM	can	detect	resultant,	convoluted	genotype-	
environment	interactions,	in	contrast	to	popular	GEA	methods	that	
can only detect correlative, linear genotype- environment interac-
tions (e.g., redundancy analysis; Capblancq & Forester, 2021).

2.5  |  Adaptive genomics- informed ENMs

Genomic	 offset	 and	 GEA	 are	 effective	 at	 detecting	 loci	 strongly	
associated with environmental gradients, but loci under long- term 
balancing selection may be difficult to detect due to inherently 
higher levels of polymorphism (Charlesworth, 2006). However, sub-
tle	signals	of	balancing	selection	can	be	magnified	with	ENM-	based	
approaches that consider the geographic distribution of adaptive al-
leles. This allows the ecological drivers of adaptive evolution to be 
inferred and associated with adaptive alleles (Figure 2d).

For example, Wu et al. (2017) detected incomplete lineage sort-
ing, or trans- species polymorphism, using whole- genome scans of 
the weed Arabidopsis thaliana and its relative Capsella rubella. Their 
premises (which were ultimately validated) were that only adaptive 
polymorphism under balancing selection should have persisted over 
a protracted time scale and that trans- species orthologous genes 
maintained by balancing selection should exhibit loci that cluster by 
alleles, not species (unlike neutral polymorphisms). The authors di-
vided samples into two genealogical groups for each selective loci, 
then modelled the ecological niche of each group and tested niche 
identity	between	the	groups.	All	genes	analysed	exhibited	statistical	
associations with specific environmental variables, strongly suggest-
ing	that	they	are	causative	loci	responsible	for	local	adaptations.	As	
illustrated by Wu et al. (2017),	 we	 think	 ENM-	based	 niche	 diver-
gence	 of	 distinct	 adaptive	 clusters	 (i.e.,	 genomics-	informed	 ENM)	
has the potential to verify whether the adaptive genomic divergence 
between ecotypes has been phenotypically realized.

Ecological niche modelling can help delineate the geographic 
distribution not only of individuals, but of a given ecological attri-
bute by associating the attribute with focal environmental variables. 
Combining	 multiple	 ENMs	 that	 use	 various	 types	 of	 information	
(e.g., phenotypic, genotypic, allelic) should be more powerful than 
a simple distribution of individuals (Figure 2d).	 Exposito-	Alonso	
et al. (2018) modelled the distribution of phenotypic information 
(e.g., drought- survival index), genotypic information (e.g., genetic 
cluster membership), and allelic information (drought- adaptive 
SNPs) to collectively predict the adaptive potential of Arabidopsis 
thaliana under future droughts. Statistical associations between 
phenotypic, genotypic, and allelic information described the local 
adaptation regime, as well as the genomic background, based on the 
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modelled	geographic	distribution.	Exposito-	Alonso	et	al.	 (2018) fit 
independent	ENMs	 for	 each	of	221	drought-	adaptive	SNPs	under	
current and future climates, then overlapped these 221 models to 
represent the geographic density of the alleles and the most likely 
genotype at each location. They found that regions harbouring suf-
ficient drought- adaptive SNPs should easily adapt to future climates 
with standing variation, but that other vulnerable geographic locales 
may need effective gene flow for future persistence. Their approach 
helps to compare the most likely genotypes of the present and an-
ticipated adaptive genotypes of the future at a given location, which 
facilitates comparisons of the most likely genotypes between loca-
tions at a certain time point. The information can be used to identify 
the required gene flow over time under future conditions; to predict 
its feasibility based on the realistic dispersal ability of the focal spe-
cies; and to choose donor populations for genetic rescue efforts.

2.6  |  Synthesis and implications

The	integration	of	WGR	and	ENM	approaches	can	provide	insights	
into adaptation profiles that are relevant to conservation and man-
agement by identifying evolutionary responses to both genomic and 
ecological adaptations. These two approaches allow the identifica-
tion of (1) adaptive characteristics, in terms of either the genome 
or the niche, of a population or a species; (2) populations that may 
become vulnerable to predicted environmental changes; and (3) the 
overall geographic and genomic patterns of local adaptation. Local 
adaptation profiles could play a significant practical role, such as 
helping to accurately predict outbreeding depression when con-
sidering assisted migration or range shifts expected under climate 
change. From such insights, locally adapted populations and critical 
habitats that harbour high genetic or niche diversity can be more ef-
fectively prioritized in customized conservation plans.

ENMs	 can	 accommodate	 diverse	 information	 (phenotypic,	
genotypic, and allelic, etc.) to help conservationists understand 
the architecture of local adaptation both now and in the future 
(Exposito-	Alonso	et	 al.,	2018).	 ENM	 forecasts	 should	 also	be	 able	
to plot distributions and expected changes in distribution of adap-
tive alleles (including structural variants revealed by WGR), if they 
have geographic attributes and are assumed to be correlated with 
environmental	 variables	 in	 ENMs.	 Accordingly,	 one	might	 be	 able	
to	 estimate	 genomic	 offset	 from	 ENMs	 (an	 “ENM-	based	 genomic	
offset”)	 by	 calculating	 the	 local	 density	 of	 adaptive	 alleles—and	
possibly weighting them by suitability values across the predicted 
habitats—and the change of allele densities over time. Other poten-
tial	implications	of	successful	WGR	and	ENM	integration	include	the	
identification of geographic or genomic regions that reveal contra-
dictory ecological and evolutionary vulnerability (allowing the quan-
tification of net vulnerability), associating ecological characteristics 
with genetic variants, or explicitly testing local adaptation using both 
genetic and niche characteristics.

Our survey of the literature also revealed clear strengths of 
whole- genome resequencing as compared to reduced representation 

sequencing (with the notable exception being the absolute price dif-
ferential, which is rapidly disappearing). Chromosome- scale WGR 
data now allow scans for selective sweeps or introgressed regions; 
both	structural	variants	and	SNPs	can	be	queried	in	GEA.	Focusing	
these analyses on known genic regions (based on annotation pro-
files) can explicitly associate these fitness- related genetic variants 
with environmental conditions. Soon, we think that studies of this 
kind will rapidly expand as both techniques become more accessible 
and innovative new integrative approaches are developed. We think 
that heretofore hidden local profiles of adaptation will be revealed 
on an ever- finer scale to aid conservation and management efforts.

3  |  FUTURE DIREC TIONS

Here we consider some limitations of current approaches, then 
speculate	on	how	WGR	and	ENM	might	be	further	 integrated	and	
applied in the future. We cheerfully admit that our crystal ball is a 
bit opaque, but we offer these ideas to stimulate further research.

There is much room for improvement in the application of 
ENMs	by	genomicists.	Niche	modelling	has	typically	been	limited	to	
some	common	correlative	ENMs,	 such	 as	MaxEnt	or	 an	ensemble	
approach of several algorithms (e.g., Brüniche- Olsen et al., 2021). 
Additional	 biological	 realism	 is	 needed	 especially	 for	 conserva-
tion	 efforts.	 With	 only	 a	 few	 exceptions	 (e.g.,	 Exposito-	Alonso	
et al., 2018; Luqman et al., 2023), the incorporation of dispersal abil-
ity	into	the	ENM	has	been	limited	by	distance	kernels,	constraining	
latitude/longitude, or keeping the current population genetic struc-
ture,	which	are	 fine	enough.	However,	ENM	tools	 that	can	 reflect	
the dispersal ability of a focal species have recently been developed, 
including	packages	megaSDM	(Shipley	et	al.,	2022) or RangeShifter 
(Bocedi et al., 2021). By attaching a species' dispersal rate internally 
in	the	ENM	(Holloway	et	al.,	2016; Seaborn et al., 2020), researchers 
can	now	compare	ENMs	with	and	without	dispersal	in	a	consistent	
fashion and generate more realized expansion/contraction of niche 
distribution (Shipley et al., 2022).

The role of biotic Interactions in determining a species' geographic 
distribution has long been recognized (Soberon & Peterson, 2005), 
but has only recently been explored in the literature. By considering 
biotic	interactions,	ENMs	may	be	able	to	predict	more	realistic	dy-
namics of local adaptation. In practice, a simple approach is to use 
the distribution (or probability of presence) of one species as a pre-
dictor of another species (Gherghel et al., 2018).	More	complex,	and	
hopefully	realistic,	joint	species	distribution	models	(JSDM;	Pollock	
et al., 2014) can infer the strength of biotic interactions based on the 
co- occurrence of multiple species (Pollock et al., 2014; Wilkinson 
et al., 2021). Phylogenetic niche modelling, on the other hand, can 
incorporate aspects of niche evolution through time and biotic in-
teractions among niche- overlapping species from phylogenetic in-
formation (Guillory & Brown, 2021;	McHugh	et	al.,	2022; Yesson & 
Culham, 2006).

Other	 potential	 advances	 on	 the	 ENM	 side	 include	 trait-	ENM	
that reflects variation of phenotypic trait, and associated fitness 
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by including the trait information as predictors (Benito Garzón 
et al., 2019; Vesk et al., 2021).	The	trait-	ENM	then	can	test	whether	
the species can persist in situ (i.e., without changes in its geo-
graphic range) under future environmental change (Benito Garzón 
et al., 2019). This approach depends on common- garden data or 
standardized sampling protocols to infer phenotypic plasticity and 
local adaptation (Benito Garzón et al., 2019; Vesk et al., 2021), but 
it could be an insightful way to include phenotypic information in 
ENMs	that	would	further	complement	results	from	WGR	studies.

From the WGR side, the function of candidate genes can be ex-
plored with gene ontology enrichment analysis, network analysis, or 
pathway analysis. While these analyses can provide locus- specific 
insights, the associated bioinformatic tools can produce false pos-
itives and this problem is exacerbated in non- model organisms 
(Fridrich et al., 2019). Thus, evidence based exclusively on nucleotide 
sequences should be corroborated with other datasets, such as phe-
notypic data or transcriptomic analyses of gene expression (Chen 
et al., 2021; Fridrich et al., 2019), ideally using a hypothesis testing 
framework as in Bellis et al. (2020).

In principle, one could also utilize patterns of gene expression 
(e.g., transcriptomic and/or regulatory sequences) to infer species 
adaptability/vulnerability	owing	to	future	environmental	change.	A	
“transcriptomic	offset”	or	“exomic	offset”	might	be	useful	to	predict	
changes in gene expression patterns in various tissues due to envi-
ronmental	factors.	Similarly,	“regulatory	offset”	could	be	estimated	
based on regulatory sequence variation, which might help provide in-
sights on adaptability across important genomic regulatory regions.

Genomic methods have been widely employed to assess dis-
persal capacity, especially for those species where tracing dis-
persal distances is challenging (e.g., Zou et al., 2023). Genomic 
analyses of pairwise relationships can estimate individual dispersal 
distances, and landscape genomics can compare gene flow patterns 
in different genomic regions (e.g., adaptive loci in comparison with 
neutral loci) while pinpointing the most important environmental 
constraints (e.g., Ledger et al., 2023). In the future, we expect that 
combining	genomics-	informed	dispersal	with	an	ENM	specific	to	a	
focal adapted cluster will help reveal whether adaptive loci could 
flow into non- adapted clusters via suitable habitats.

Through	 their	 work	 in	 “community	 genetics,”	 Whitham	
et al. (2003) and others (reviewed in Crutsinger, 2016) have shown 
that heritable genetic variation within a given species can have com-
munity and ecosystem consequences. Hand et al. (2015) have ex-
panded	 this	 concept	 into	 “landscape	community	genomics,”	which	
evaluates interspecific genomic interactions across environmental 
conditions. For example, the molecular evolutionary networks un-
derlying the expression of heat shock proteins could help explain the 
geographic distribution of desert fauna. Given the ongoing charac-
terization of pangenomes (see Box 1: Glossary; Tettelin et al., 2005), 
we anticipate tremendous biological insights when the field of “land-
scape	 community	 pangenomics”	 ultimately	 emerges.	 For	 instance,	
a pangenomic approach could advance our understanding of adap-
tation by employing structural variants such as chromosomal inver-
sions	into	GEA	(Heraghty	et	al.,	2022).

We think integrative analyses of environmental niche and ge-
netic load or genetic thrust have the potential to provide key insights 
that could be important for conservation and management efforts. 
Bertorelle et al. (2022) provide a thorough review of genetic load, 
which varies among populations depending on their demographic 
histories and on selection regimes (e.g., purging or positive selection; 
Mathur	 &	 DeWoody,	 2021;	 Mathur,	Mason,	 et	 al.,	 2023;	 Mathur,	
Tomeček,	et	al.,	2023). We think careful WGR evaluations of load (or 
thrust)	in	light	of	ENM-	informed	adaptive	profiles	have	the	potential	
to significantly improve assisted migration or genetic rescue efforts. 
On	the	whole,	we	believe	that	integrating	more	realistic	ENMs	(such	
as	dispersal-	attached	ENMs)	and	advanced	WGR-	based	approaches	
(such as pangenomics) will greatly enhance our understanding of 
local adaptation and community interactions.

3.1  |  Potential limitations and solutions

Potential	limitations	applicable	to	the	integration	of	ENM	and	WGR	
are discussed in Lovell et al. (2023),	Miller	et	al.	(2004), and Rellstab 
et al. (2021). We highlight two crucial limitations known as the 
“space-	for-	time	 substitution”	and	 “extrapolation	beyond	 the	 scope	
of	space	and	time.”	The	“space-	for-	time	substitution”	refers	to	sub-
stituting temporally varying conditions with spatially varying condi-
tions,	and	the	“extrapolation	beyond	the	scope”	refers	to	projecting	
biological trends outside of space or time parameters that were ap-
plied in the model training. These approaches can limit biological in-
ferences in that the former ignores the possibility of different biotic 
responses over time compared to over space (Lovell et al., 2023), 
whereas the latter ignores the uncertainty of the model under the 
unobserved	environment	(Miller	et	al.,	2004). For example, when we 
assess vulnerability of populations under future climate conditions, 
we assume that the identical set of putatively adapted loci identi-
fied across spatial variation is the same under temporal variation of 
environment, which may not be true (Therkildsen et al., 2013; but 
see Wogan & Wang, 2018). Furthermore, populations are assumed 
to be vulnerable under unobserved future climatic conditions, which 
might not follow predictions (Feng, Park, Liang, et al., 2019; Feng, 
Park, Walker, et al., 2019; Qiao et al., 2019) regardless of whether 
the predicted vulnerability is assessed by the contemporary adap-
tive loci or under the predicted future climate.

The key to dealing with these limitations is to identify the credi-
ble boundary for interpretation, such as quantifying the transferabil-
ity	of	ENMs	(Qiao	et	al.,	2019).	Analysing	contemporary	and	ancient	
DNA	 for	 comparison	 (Rellstab	et	 al.,	2021) or simulating genomes 
over time under changing future environments (e.g., inputting en-
vironment	 rasters	 at	 time	 intervals	 in	 SLiM	 simulations;	 Haller	 &	
Messer,	2023) may help to determine how the genomes change with 
environments.

Both niche modelling and population genomics have grown too 
large to be fully understood and properly conducted by most nov-
ices. Inappropriate analyses can and do occur when genomicists try 
to	 utilize	 ENMs	 or	 ecologists	 try	 to	 incorporate	 genomics	 results	
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without fully appreciating the limitations of each dataset. We have 
seen published examples where there were substantive mismatches 
between the temporal scales of collected sample and environmental 
data	 (e.g.,	DNA	data	 from	ancient	or	 historical	 samples	used	with	
contemporary climate data), mismatches between spatial scales of 
species' ecology and environmental data, questionable or unvali-
dated locality data associated with museum samples, and a lack of 
consideration for sampling biases.

We strongly recommend active cross- talk between WGR ge-
nomicists	 and	 ENM	 ecologists	 to	 foster	 collaboration.	 (Figures 3 
and 4; see also Hodel et al., 2018; Chen et al., 2022; and DeSaix 
et al., 2022). Figure 3 shows an example of prospective workflows 
(based on Gheyas et al., 2021 and Vallejo- Trujillo et al., 2022) which 
unify	WGR	 and	 ENM	 to	 cope	 with	 future	 threats.	 In	 this	 ENM-	
informed	adaptive	genomics	workflow,	 an	ENM	 is	 fitted	 for	each	
population and the populations are then grouped according to their 
niche similarity. Clusters that share similar niche characteristics are 
then analysed for their adaptive genomic characteristics to iden-
tify regions associated with local adaptation. In contrast, Figure 4 
(based on Luqman et al., 2023) represents a retrospective work-
flow	 to	 infer	 historical	 local	 adaptation.	 Serial	 hindcasting	 ENMs	
and neutral genomic inferences are conducted independently to 
infer and cross- check population histories. Historical genomic off-
set could then be computed between present- day populations and 
their historical refugia and characterized using key environmental 
variables. Sophisticated new software packages can further assist 
the workflows by simulating characteristics of both genome- scale 
data	 and	niche	prediction,	 such	 as	SLiM	 (Haller	&	Messer,	2023), 

Geonomics (Terasaki Hart et al., 2021), and RangeShifter (Bocedi 
et al., 2021).

The harmonious integration of niche modelling and population 
genomic data will typically require collaboration. It will also require 
practitioners to reexamine pervasive misconceptions (e.g., popu-
lation genomics is completely unaffordable or too convoluted, or 
that	meaningful	 ENMs	 can	 be	 generated	 in	 one	 “click”)	 (Bilodeau	
et al., 2019; Breed et al., 2019; Feng, Park, Liang, et al., 2019; Feng, 
Park, Walker, et al., 2019). We expect that collaborations will be 
most productive and insightful when partnerships are developed 
between experienced population genomicists and niche modellers 
who recognize the strengths and weaknesses of their own fields. 
Their united efforts will produce more accurate insights regarding 
local adaptation and its reliable conservation.

4  |  CONCLUSIONS

We have summarized recent efforts to integrate ecological niche 
modelling and whole- genome resequencing to characterize local 
adaptation profiles. We have also suggested additional avenues 
whereby	WGR-	ENM	integration	could	be	pursued	in	the	future.	The	
novel merits of integrating the two stem from the fact that WGR as a 
type	of	data	and	ENM	as	a	method	of	analyses	can	assess	two	differ-
ent eco- evolutionary aspects (organismal and molecular) at two dif-
ferent scales (macro and micro). We think the orthogonal aspects of 
WGR-	ENM	integration	can	and	should	be	carefully	exploited	for	the	
benefit of conservation and management efforts around the world.

F I G U R E  3 A	prospective	workflow	for	identifying	and	conserving	local	adaptation,	based	on	Gheyas	et	al.	(2021) and Vallejo- Trujillo 
et al. (2022).	This	workflow	of	ENM-	informed	adaptive	genomics	unifies	whole-	genome	resequencing	(WGR)	and	ecological	niche	modelling	
(ENM)	to	discriminate	clusters	of	different	niche	characteristics	and	to	characterize	adaptive	genetic	variants	in	each	of	them.	The	colour	
scheme of the outline follows Figure 2.
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