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Abstract
Background  Ecological niche models (ENMs) and analyses of niche overlap/divergence have become popular 
methods in ecology and evolutionary biology. These analyses rely on environmental data available from several 
databases. However, the influence of data sources on these analyses is rarely tested. Here, we test the impact of 
climatic data choice on the prediction of current and Plio-Pleistocene suitable habitats for two distantly related, 
but broadly sympatric, salamanders endemic to the Korean Peninsula. We ran MaxEnt separately on WorldClim 
and CHELSA climate data. We then hindcasted ENMs to five time periods of the Plio-Pleistocene, bracketing the 
estimated intraspecific divergence times for these species. We then quantified the differences in predictions between 
WorldClim- and CHELSA-based models. Also, given the sympatry and similar habitat requirements of the two species, 
we tested for niche overlaps using niche identity and background tests and tested the sensitivity of the results to 
climatic data choice.

Results  The ENMs successfully predicted contemporary suitable habitats for the two species. However, the 
predictions were highly sensitive to climatic data choice as well as variable combinations. The hindcasted ENMs 
produced contrasting predictions depending on the choice of climatic dataset and failed to predict suitable habitats 
for some Pleistocene time periods regardless of the climatic data choice. The niche analyses were also sensitive to 
climatic data choice, with results suggesting either niche overlaps or divergence depending on the climatic dataset 
used for the analyses.

Conclusions  Our study highlights the influence of climatic data choice on the outcomes of ENMs and niche 
analyses. Our results also underscore the limitations of macroclimate-based ENMs, especially when the species 
is likely buffered from macroclimatic changes by microhabitat. We argue for the need for additional ecological, 
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Background
Correlative ecological niche models (ENMs) and analy-
ses of niche overlap/divergence have become hugely 
popular methods in ecology and evolutionary biology. 
With increasing data availability and computational 
advancements, these methods have been widely applied 
to answer questions in ecology, biogeography, evolution, 
and conservation biology [1–5]. Both of these methods, 
as implemented in popular software packages, generally 
require the following data types: geographic coordinates 
of species occurrence records, coordinates for absence 
or background data, and environmental variables. Most 
of these data can be obtained from public data sources 
or sampled as part of the analyses. For example, environ-
mental data, and especially climatic data, for these anal-
yses are generally obtained from one of several popular 
public databases, including WorldClim [6], CHELSA [7], 
and ENVIREM [8].

Numerous studies investigated the effects of occur-
rence and absence/background point sampling and 
model complexity on the model prediction outcomes 
[9–14]. Relatively less attention has been given, however, 
to the prediction uncertainties associated with the choice 
of climatic data sources [15–17]. Different climatic data-
bases are generated using different methodological 
approaches. The choice of climatic data, therefore, can 
introduce significant uncertainties into model outcomes 
and downstream interpretations [17]. The implications 
of these uncertainties become greater when the models 
are extrapolated to different environmental conditions 
across time and space. Most studies select climatic data 
from one of many available databases, but justifications 
for selection are rarely provided. Given that one of the 
primary applications of ecological niche modeling and 
niche overlap/divergence analyses is spatiotemporal pro-
jections and the study of niche shifts, the influence of 
climatic data choice on the outcomes of these analyses 
needs to be better understood.

On the other hand, the resolution of available data and 
species-specific ecology can result in genuine limitations 
of ecological niche models to predict species distribu-
tions. For example, macroclimatic variables available 
from databases such as WorldClim or CHELSA may not 
be suitable to model suitable habitats of small, forest-
dwelling species that are buffered from macroclimatic 
fluctuations and are likely more sensitive to microcli-
matic changes [18]. While mechanistic niche modeling 
[19, 20] can produce more realistic predictions for these 
species by accounting for ecophysiological factors and 

microclimate, this method is usually more data-intensive 
and, therefore, not applicable to many species that are in 
a juxtaposition of poorly known ecology and lack of data.

In this study, we investigate the influence of climatic 
data choice and limitations of ENMs in predicting the 
current and past distributions of two distantly related 
lungless salamander species endemic to the Korean Pen-
insula: the Korean Clawed Salamander (Onychodactylus 
koreanus) and the Korean Crevice Salamander (Karsenia 
koreana). Onychodactylus koreanus is a hynobiid sala-
mander with a biphasic life cycle and a prolonged aquatic 
larval stage [21]. Both larvae and adults are strict habi-
tat specialists of forests and mountain streams [22–24]. 
Karsenia koreana is the only known Asian representative 
of the family Plethodontidae [25], and unlike O. koreanus, 
this species is fully terrestrial and has direct-developing 
eggs [26]. It is also found strictly in forested areas adja-
cent to mountain streams [27].

While the geographic distributions of both species are 
not fully characterized within the Korean Peninsula [28], 
the two species occur in broad sympatry from the central 
to southern part of the peninsula along a major moun-
tain range (Fig.  1). Based on previous mtDNA-based 
phylogeographic studies, the current range of O. korea-
nus was most likely formed from a historical southward 
dispersal of an ancestral lineage to the Korean Peninsula 
[23]. This was likely followed by rapid diversification and 
isolation along the mountains of the Korean Peninsula 
between 1.6 and 2.7 Ma [23]. For K. koreana, the disper-
sal of ancestral lineages from North America through the 
Bering land bridge around 65 Ma has been inferred based 
on phylogenetic analyses [29, 30]. Following the Pleisto-
cene glacial period, the populations that persisted in the 
southern part of the Korean Peninsula expanded their 
ranges northward, followed by the isolation of genetically 
distinct regional populations along the mountains of the 
Korean Peninsula. Most of the intraspecific divergence in 
this species occurred within 1 Ma [31].

Given the physiological similarity, distant evolutionary 
relationships, broad sympatry, and apparent overlaps in 
habitat use, understanding the processes of range forma-
tion in these species carries substantial biogeographical 
and ecological significance. In this context, it is crucial 
to understand the impacts of past climatic shifts on the 
range formation processes of these species as both spe-
cies are lungless and likely sensitive to climate change 
[24, 32]. This is especially relevant considering the influ-
ence of Quaternary climatic oscillations on current bio-
diversity [33]. Furthermore, geographic distributions 

ecophysiological, and population genomic studies to better understand the range formation of these enigmatic 
species.
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and ecological niches are usually compared between 
sister species or closely related species within the same 
genus. These species, therefore, provide rare and interest-
ing opportunities to investigate responses of ecologically 
and physiologically similar but distantly related species to 
common climatic fluctuations.

While ENMs can complement phylogeographic stud-
ies by visualizing the shifts of potentially suitable habi-
tats over time, and niche analyses can provide insights 
into contemporary niche overlaps given broad sympatry, 
the influence of climatic data choice and associated 
uncertainties should also be evaluated to avoid spurious 
conclusions. Therefore, our study aims to address the fol-
lowing questions: (1) Can current environmental datas-
ets sufficiently predict the contemporary distributions of 
O. koreanus and K. koreana given known distributions? 
(2) Can contemporary ENMs predict suitable habitats 
during the Quaternary, consistent with the population 
demography estimated from genetic data? (3) Do these 
species show patterns of niche overlaps given broad sym-
patry and similar habitat requirements? (4) What are the 
influences of climatic data choice on the results of these 
analyses?

Methods
Data Preparation
To generate ENMs for the two study species under cur-
rent environmental conditions, we obtained spatially rar-
efied occurrence dataset of O. koreanus from a previous 
study (n = 187; [24]), which was initially compiled from 
survey records, Global Biodiversity Information Facil-
ity (GBIF), VertNet, and natural history museum data. 
We compiled occurrence records of K. koreana from the 
results of National Ecosystem Surveys (NES; accessed via 
the Ecobank platform; [34]), a previous study by Jeon et 
al. (2021) [31], and the GBIF (via the megaSDM package; 
[35]), resulting in a total of 362 occurrence points. We 
spatially rarefied this dataset to 137 occurrence points 
using the “thinData” function of the SDMtune package 
[36] in R v4.2.2 [37]. We note that our occurrence data-
sets compiled data from different biodiversity databases 
and surveys, each with different data collection methods, 
biases, and temporal and spatial coverages. For example, 
the NES are standardized surveys conducted in speci-
fied surveys grids, whereas the GBIF data incorporates 
various data types including non-standardized citizen 
science observations and museum records. However, 

Fig. 1  Geographic distribution and habitat of the Korean Clawed Salamander (Onychodactylus koreanus) and Korean crevice salamander (Karsenia ko-
reana). A The known geographic distributions of O. koreanus (blue dots) and K. koreana (yellow dots) across the Korean Peninsula. Note the overlapping 
ranges of the two species in the central and southern parts of the peninsula. The geographic range of each species based on Borzée et al. (2024) [42] is 
shown with polygons corresponding to the color of occurrence points. Note that the range polygons used here do not provide a complete representa-
tion of species ranges. B A representative forest habitat in the Republic of Korea, where both O. koreanus (C) and K. koreana (D) occur. Both species can be 
found along the streams and adjacent forest floors with no apparent segregation in habitat types. Photographs in (B) – (D) and the map inset image of O. 
koreanus were taken by Yucheol Shin, and the map inset image of K. koreana was taken by Amaël Borzée
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we justify the use of these datasets as this provided the 
most comprehensive spatial coverage of occurrence 
points within the known distributions of the two species. 
We further compensated for the spatial sampling bias of 
occurrence points using a modified background sampling 
method (see below).

Although not fully characterized, the geographic dis-
tributions of O. koreanus and K. koreana are likely to 
extend into the Democratic People’s Republic of Korea 
(DPR Korea) based on the continuous distribution of 
mountain ranges and forested habitats [28]. However, 
the general paucity of reliable occurrence records for 
these species from DPR Korea and the relative abun-
dance of occurrence points from the Republic of Korea 
(R Korea) introduce a significant sampling bias towards R 
Korea that cannot be compensated by the spatially thin-
ning of occurrence points alone. Therefore, we modified 
the sampling of background points considering two lev-
els of spatial sampling bias in the occurrence datasets. 
The first level (background set 1; BG1 hereafter) was 
sampled from a kernel density surface generated from 
pooled occurrence points of amphibians recorded from 
across the Korean Peninsula, representing the overall 
sampling effort for amphibians across the study area (see 
[24] for specific methods). The amphibian occurrences 
were obtained from GBIF, NES, and Borzée et al. (2021) 
[28]. The second level (BG2) was sampled from a kernel 
density surface generated from pooled occurrences of O. 
koreanus and K. koreana, representing spatial sampling 
effort constrained specifically to the two study species. 
The generation of kernel density surfaces was conducted 
using the R package MASS [38]. For each level of spatial 
bias, we sampled three background sets with different 
sample sizes (n = 5,000, n = 10,000, n = 15,000). Thus, we 
used a total of six different background datasets (2 lev-
els of spatial bias × 3 different sample sizes) for model 
testing.

For environmental data, we initially considered 22 vari-
ables: 19 bioclimatic variables from WorldClim ​(​​​h​t​t​p​s​:​
/​/​w​w​w​.​w​o​r​l​d​c​l​i​m​.​o​r​g​/​​​​​; [6]), elevation, slope, and global 
consensus raster layers for needleleaf forest, deciduous 
broadleaf forest, and mixed/other forest types obtained 
from the EarthEnv database (https://www.earthenv.org/; 
[39]). We note that slope is a highly scale-dependent 
variable and that salamanders may have different prefer-
ences for finer-scale slopes. Therefore, our application of 
the slope layer here is to capture the general, larger-scale 
habitat characteristics of these salamanders rather than 
capturing finer scale habitat conditions. Also, because 
these salamanders are generally associated with heavily 
forested habitats, we merged the three forest cover lay-
ers with the “Mosaic to New Raster” tool in ArcGIS Pro 
v2.6.0 (ESRI, Redlands, CA), using the “Max” mosaic 
operator to assign a maximum percent forest cover value 

among overlapping forest cover layers. All raster layers 
were in 1 km spatial resolution (= 0.008333 dd) and were 
masked to the geographic extent of the Korean Peninsula 
using the raster R package [40]. We used the boundary 
of the Korean Peninsula to define the model calibration 
range because the distributions of these two species fall 
within this area (e.g., regions in northeastern China adja-
cent to DPR Korea are inhabited by other species of Ony-
chodactylus and no other Asian plethodontid has been 
reported outside of Korean Peninsula; [41, 42]). This 
area thus represents the range of environmental condi-
tions suitable for these species. In addition, using alterna-
tive approaches such as alpha or convex hulls will result 
in smaller calibration areas that cannot fully capture the 
range of environmental conditions available to these 
species.

From this set of 22 variables, we first removed five bio-
climatic variables not represented in the paleoclimatic 
dataset used for hindcasting. These variables were mean 
diurnal range (bio2), isothermality (bio3), maximum tem-
perature of the warmest month (bio5), minimum tem-
perature of the coldest month (bio6), and temperature 
annual range (bio7). We then conducted a Pearson’s cor-
relation test on the remaining 17 variables and removed 
highly correlated variables with | r | >0.8. This resulted in 
the following set of eight environmental variables: annual 
mean temperature (bio1), temperature seasonality (bio4), 
annual precipitation (bio12), precipitation of the wettest 
month (bio13), precipitation of the driest month (bio14), 
precipitation seasonality (bio15), forest cover, and slope. 
Considering the known ecology of the species, we con-
sidered the selection of these variables to be appropri-
ate. The variable selection step was conducted with the R 
package ntbox [43].

Model development
To estimate the current habitat suitability of O. koreanus 
and K. koreana, we used the maximum entropy (MaxEnt; 
[44]) algorithm and conducted extensive model testing 
using the ENMeval R package (version 2.0; [45]). One of 
the primary goals of this study was to transfer the cur-
rent model to historical climate conditions. However, no 
matching topographic and vegetation raster data were 
available for the time periods of model transfer and our 
study area, and keeping the non-climatic variables con-
stant across model transfers was deemed unrealistic. 
Therefore, we first generated current ENMs for both spe-
cies using only the bioclimatic variables (“climate-only 
model” hereafter).

To do so, we considered six bioclimatic variables with 
low multicollinearity and six background datasets (BG1, 
BG2, each with three different sample sizes). For each 
combination of climatic and background sets, we tested 
combinations of 13 MaxEnt feature classes (L, Q, H, P, 

https://www.worldclim.org/
https://www.worldclim.org/
https://www.earthenv.org/
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LQ, LP, QH, QP, HP, LQH, LQP, LQHP, LQHPT; where 
L = Linear, Q = Quadratic, H = Hinge, P = Product) and 10 
regularization multipliers ranging from 0.5 to 5 at a 0.5 
increment. We evaluated the candidate models using a 
4-fold hierarchical spatial checkerboard cross-validation, 
implemented in the R package ENMeval with the “check-
erboard2” method [45]. We selected this data partitioning 
scheme as spatial cross-validation methods are generally 
recommended for model transfer [46, 47] and because it 
produced a generally similar number of data points and 
environmental representations across the four cross-val-
idation folds. All other data partitioning strategies, such 
as the 4-fold spatial blocks, random k-fold partitioning, 
and user-specified spatial blocks, produced irregular 
allocation of data points and/or irregular environmen-
tal representation across the cross-validation folds. Fur-
thermore, clamping was used in all model runs to limit 
extrapolation beyond the range of calibration dataset.

Thus, we tested a total of 3120 models for each species 
(1 modeling algorithm x 2 levels of spatial bias correction 
x 3 sets of background points x 4 cross-validation runs x 
13 MaxEnt feature combinations x 10 regularization val-
ues). While ΔAICc is commonly used as a model selec-
tion criterion [48, 49], preliminary model selection using 
this criterion resulted in the selection of models with 
excessively high omission rates. Therefore, we selected 
the optimal model for each species in a sequential fash-
ion by applying the lowest 10% omission rate (OR10) as 
a primary filtering criterion, the lowest AUCDIFF (dif-
ference between the area under the curve [AUC] values 
calculated from training and testing data [AUCTRAIN - 
AUCTEST]; [50]) as a secondary filtering criterion, and the 
highest AUCTEST as a tertiary filtering criterion, thereby 
minimizing omission and overfitting while maximiz-
ing predictive performance [51, 52]. Although the use 
of AUC as an absolute measure of model performance 
has been criticized for presence-background ENMs [53, 
54], we used AUC as a relative measure of model perfor-
mance to compare a suite of candidate ENMs for each 
species. In addition, we used the Continuous Boyce Index 
(CBI; [55]) as another measure of model performance. 
We also visually inspected the output prediction maps to 
assess the geographical consistency of predictions with 
the known distributions of the two species.

Based on these criteria, the optimal model for O. kore-
anus was made with BG1 (with n = 10,000) and LQ fea-
tures combined with a regularization multiplier of 1.0. 
For K. koreana, the optimal model was made with BG1 
(with n = 10,000) and an LP feature with a regularization 
multiplier of 5.0. Finally, we tested the selected optimal 
model for each species against the null ENMs [56] and 
assessed whether the empirical ENMs significantly out-
perform the null ENMs based on CBI and AUCTEST. The 
null ENMs were computed in 1,000 iterations using the 

“ENMnulls” function of the ENMeval package. For the 
optimal model for each species, we assessed variable 
importance through permutation importance and per-
cent contribution.

We also generated ENMs for both species by adding 
two non-climatic variables (slope and forest cover) that 
are relevant to species ecology to the six bioclimatic vari-
ables (“full model” hereafter) to test if the predictions 
from climate-only models deviated considerably from 
the full models. All models generated in this study were 
in complementary log-log (cloglog; [44]) format, and we 
used the WGS 84 coordinate reference system for all 
geographic projections. The full details of ENMs can be 
found in the ODMAP reporting protocol associated with 
this study ([57, 58]; Supplementary Material 1).

Hindcasting ENMs
We transferred the optimal climate-only ENMs for O. 
koreanus and K. koreana to five paleoclimatic models of 
the Pliocene and Pleistocene, corresponding to the major 
climatic events bracketing the intraspecific divergence 
times of the two species estimated from genetic data [23, 
31]. These time periods are: mid-Pliocene Warm Period 
(mPWP; ca. 3.2  Ma), Marine Isotope Stage 19 (MIS19; 
ca. 787 Ka), Last Interglacial (LIG; ca. 130 Ka), Last Gla-
cial Maximum (LGM; ca. 21 Ka), and Mid-Holocene 
(MH; ca. 6 Ka). The paleoclimatic models were down-
loaded from PaleoClim (http://www.paleoclim.org/; 
[59–61]) at the 5  km spatial resolution (= 0.041666 dd). 
To match the spatial resolution of current and paleocli-
matic data, we statistically downscaled the paleoclimatic 
layers to 1 km spatial resolution using bilinear interpola-
tion, implemented with the “disaggregate” function of the 
raster package. For each model transfer, we assessed the 
extrapolation risk through Multivariate Environmental 
Similarity Surface (MESS; [62]) computed in the R pack-
age ntbox [43].

Influence of climatic data sources on ENMs
To assess the effect of climatic data choice on the output 
model predictions [17, 63], we repeated the modeling 
steps outlined above by using the same set of six biocli-
matic variables downloaded from CHELSA ​(​​​h​t​t​p​s​:​/​/​c​h​e​l​
s​a​-​c​l​i​m​a​t​e​.​o​r​g​/​​​​​; [7]). We note that conducting a separate 
Pearson’s correlation test on CHELSA bioclimatic vari-
ables resulted in the selection of the same six variables as 
the WorldClim-based selection. First, to directly compare 
climate values between WorldClim and CHELSA data-
sets within the geographic ranges of our target species, 
we extracted raster pixel values of the two datasets sepa-
rately from the occurrence points of O. koreanus and K. 
koreana. For each species, and separately for each biocli-
matic variable, we conducted the Mann-Whitney U-test 
to test if climatic values differed between datasets. To 

http://www.paleoclim.org/
https://chelsa-climate.org/
https://chelsa-climate.org/
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spatially visualize the difference between the WorldClim 
and CHELSA bioclimatic variables, we subtracted the 
CHELSA rasters from WorldClim rasters. Thus, in these 
“difference rasters,” pixels with positive values indicate 
higher values in WorldClim layers and pixels with nega-
tive values indicate regions where the CHELSA layers 
had higher values.

Next, we fitted the same optimal model for both spe-
cies (LQ 1.0 for O. koreanus and LP 5.0 for K. koreana) 
but using the CHELSA bioclimatic variables. We gener-
ated both climate-only and full models and then spatially 
visualized the areas in which the WorldClim-based and 
CHELSA-based models differed in current habitat suit-
ability predictions. We then repeated model transfer 
with the CHELSA-based climate-only models. To quan-
tify the difference between spatial predictions based on 
WorldClim and CHELSA data, we followed the method 
provided by Dubos et al. (2023) [17], using the following 
equation slightly modified from that study:

	

|
∑

PW orldClimj −
∑

PCHELSAj |∑
P W orldClimj

× 100

Here, PWorldClimj and PCHELSAj denote the estimated suit-
ability score of a given raster pixel j in predictions based 
on WorldClim and CHELSA data, respectively. There-
fore, this method quantifies the overall percentage dif-
ference between a pair of model predictions relative to 
the baseline prediction (WorldClim-based predictions in 
this case) across the entire area of projection for a given 
time period, with a higher level of difference indicating a 
stronger effect of climate data source in causing the dif-
ference in predictions [17].

In addition, following Dubos et al. (2023) [17], we com-
puted the Schoener’s D overlap between WorldClim-
based and CHELSA-based model predictions to account 
for spatial information. The Schoener’s D index ranges 
from 0 to 1, where a value closer to 1 indicates higher 
spatial similarity between a pair of predictions and thus a 
lower effect of climatic data source. We used the follow-
ing equation to calculate Schoener’s D [64, 65]:

	
D (px, py) = 1 − 1

2
∑

i

|pxi
− pyi

|

As originally defined for the application of Schoener’s D 
to ENM predictions, pxi (or pyi) denotes the estimated 
suitability value of a grid cell i for the ENM prediction of 
species X (or Y) [65]. In the context of our analysis, X and 
Y correspond to the prediction based on WorldClim and 
CHELSA data, respectively. Furthermore, as Schoener’s 
D is typically applied as an index of niche overlap, we 
converted the calculated D values using (1 – D) x 100 to 
the index of percent difference between predictions [17]. 

The spatial overlap between model predictions was calcu-
lated using the “raster.overlap” function of the ENMTools 
package [66].

While the use of same model parameters optimized for 
WorldClim data for CHELSA data is convenient for the 
purpose of model comparisons, it may lead to suboptimal 
parameterization for the CHELSA dataset. Therefore, we 
conducted separate model tuning runs for the CHELSA 
dataset, using the same occurrence and background 
datasets, data partitioning scheme, and testing the same 
number of feature classes and regularization values for 
each species. The optimal parameters for the CHELSA 
data were HP feature classes and regularization multi-
plier of 4 for O. koreanus and LQ feature classes with a 
regularization multiplier of 0.5 for K. koreana. We then 
hindcasted these CHELSA-optimized models to test the 
influence of CHELSA-specific parameter optimization 
on model transfer results.

Contemporary niche overlaps
We conducted niche identity test and asymmetric back-
ground test to quantify and compare the ecological 
niches of O. koreanus and K. koreana. The niche iden-
tity test uses randomized pseudoreplicates to generate 
a null distribution of niche overlap values and compare 
these values to the observed overlap value [65]. Here, 
the randomization process is conducted by pooling the 
occurrence points of a species pair and randomizing the 
species identity. Next, new sets of occurrence points are 
sampled from this randomized pool, retaining the origi-
nal number of occurrence points for each species [65]. 
The null hypothesis of niche identity is rejected when the 
test result is statistically significant. On the other hand, in 
the asymmetric background test, the null distribution is 
generated by randomly shifting the occurrence points of 
one species and calculating the niche overlap value with 
the other species [65]. This null distribution is then com-
pared to the observed value of niche overlap. Therefore, 
this test compares the niche of one species to the broader 
environmental background of another species [65]. A 
significantly higher niche overlap value indicates higher 
niche similarity than expected. On the other hand, a sig-
nificantly lower niche overlap value may indicate niche 
divergence between the species pair. We conducted the 
background test in two directions, first comparing the 
niche of O. koreanus to the environmental background of 
K. koreana and then comparing the niche of K. koreana 
to the environmental background of O. koreanus.

We implemented these analyses in environmental 
space (E-space; [67, 68]) and within the framework of the 
Niche Overlap Test (NOT) and Niche Divergence Test 
(NDT) of Brown & Carnaval (2019) [68] to explicitly con-
sider the spatial distribution and availability of environ-
mental conditions. The NOT represents the identity and 
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background statistics calculated over the total accessible 
E-space within the geographic ranges of two species, 
whereas NDT represents the identity and background 
statistics calculated only within the accessible E-space 
shared between two species [68]. We conducted these 
analyses using the R package humboldt [68]. As input 
environmental data, we used eight environmental vari-
ables (six climatic and two non-climatic variables) ini-
tially selected from Pearson’s correlation test (see above), 
following the recommendations in the humboldt package 
documentation [69]. To test for the sensitivity of results 
to climatic data choice, we separately conducted NOT 
and NDT using the bioclimatic variables from World-
Clim and CHELSA and used Schoener’s D [64] as the 
metric of niche overlap.

Results
Current ENMs of O. koreanus
The climate-only ENMs for O. koreanus based on World-
Clim data had low model overfitting and adequate pre-
dictive performance (CBI = 0.909; AUCTEST = 0.787; 
AUCDIFF = 0.014; OR10 = 0.089; Table 1). In addition, the 
comparison of climate-only empirical models against null 
ENMs suggested that the empirical models have signifi-
cantly higher predictive abilities (p < 0.001 for both CBI 
and AUCTEST; Table  1). The climate-only ENMs based 
on WorldClim data predicted suitable habitats along the 
major mountains of the Korean Peninsula. Overall, pre-
dictions from the full model did not deviate considerably 
from the climate-only prediction (Fig.  2A; See Supple-
mentary Fig. 1 A for binary presence/absence maps and 
Supplementary Table 1 for conversion thresholds). How-
ever, the full model predicted suitable habitats for O. 
koreanus in areas with the highest elevation within DPR 
Korea, while the climate-only model predicted this area 
to be unsuitable.

The climate-only ENMs for O. koreanus based on 
CHELSA data also had low model overfitting and good 
predictive performance (CBI = 0.899; AUCTEST = 0.784; 
AUCDIFF = 0.025; OR10 = 0.104; Table  1). The climate-
only empirical model significantly outperformed the null 

ENMs (p < 0.001 for both CBI and AUCTEST; Table 1). The 
climate-only ENMs based on CHELSA data predicted 
suitable habitats for O. koreanus across the major moun-
tains of the Korean Peninsula. However, unlike the pre-
dictions from WorldClim-based models, CHELSA-based 
models predicted the entire geographic extent of DPR 
Korea to be suitable for O. koreanus (Fig.  2A; See Sup-
plementary Fig. 1 A for binary presence/absence maps 
and Supplementary Table 1 for conversion thresholds). 
Except for the smaller predicted area of suitable habitats 
in DPR Korea, the prediction from the CHELSA-based 
full model did not deviate significantly from the climate-
only prediction (Supplementary Fig. 1 A).

For both climate-only models based on WorldClim 
and CHELSA data, mean annual temperature (bio1) and 
precipitation of the wettest month (bio13) were the two 
most important variables. However, slope was the most 
important variable for the full model based on World-
Clim data, and precipitation of the wettest month (bio14) 
was the second most important variable. For the full 
model based on CHELSA data, annual mean temperature 
(bio1) was the most important variable, and slope was 
the second most important variable based on permuta-
tion importance. See Table 2 for the importance of each 
variable based on permutation importance, and Supple-
mentary Table 2 for variable importance values based on 
percent contribution.

Current ENMs of K. koreana
The climate-only ENMs for K. koreana based on World-
Clim data had good predictive performance and a low 
degree of model overfitting (CBI = 0.771; AUCTEST = 
0.837; AUCDIFF = 0.011; OR10 = 0.092; Table  1). The cli-
mate-only empirical model also performed significantly 
better than the null ENMs (p < 0.001 for both CBI and 
AUCTEST; Table  1). The climate-only ENMs based on 
WorldClim data predicted suitable habitats of K. kore-
ana to be primarily in the central and southern parts of R 
Korea, along the major mountains (Fig. 2B; Supplemen-
tary Fig.  1B). The suitable habitats predicted from the 
full model did not deviate considerably from predictions 

Table 1  Predictive performance of climate-only empirical and null maxent models for Onychodactylus koreanus and karsenia koreana 
based on four evaluation metrics
Species Data Model CBI

(Mean ± SD)
AUCTEST
(Mean ± SD)

AUCDIFF
(Mean ± SD)

OR10
(Mean ± SD)

O. koreanus WorldClim Empirical 0.909 ± 0.029 0.787 ± 0.011 0.014 ± 0.002 0.089 ± 0.031
O. koreanus WorldClim Null 0.056 ± 0.198 0.516 ± 0.038 0.117 ± 0.027 0.160 ± 0.046
O. koreanus CHELSA Empirical 0.899 ± 0.041 0.784 ± 0.021 0.025 ± 0.014 0.104 ± 0.030
O. koreanus CHELSA Null 0.608 ± 0.241 0.517 ± 0.038 0.113 ± 0.027 0.170 ± 0.044
K. koreana WorldClim Empirical 0.771 ± 0.036 0.837 ± 0.009 0.011 ± 0.007 0.092 ± 0.088
K. koreana WorldClim Null 0.526 ± 0.248 0.520 ± 0.051 0.137 ± 0.027 0.035 ± 0.044
K. koreana CHELSA Empirical 0.839 ± 0.099 0.849 ± 0.023 0.020 ± 0.017 0.109 ± 0.024
K. koreana CHELSA Null 0.111 ± 0.218 0.538 ± 0.068 0.182 ± 0.035 0.131 ± 0.091
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Table 2  The variable importance values for maxent models for Onychodactylus koreanus and karsenia koreana based on permutation 
importance. The first and second most important variables for each model are highlighted in bold
Species Data Model Bio1 Bio4 Bio12 Bio13 Bio14 Bio15 Forest cover Slope
O. koreanus WorldClim Climate-only 70.40 1.73 2.60 14.36 10.80 0.10 N/A N/A
O. koreanus WorldClim Full 5.99 3.55 0.48 1.31 25.72 12.46 4.19 46.30
O. koreanus CHELSA Climate-only 62.57 0.54 7.34 18.55 1.68 9.31 N/A N/A
O. koreanus CHELSA Full 28.50 0 12.59 21.86 10.23 0.14 0.70 25.97
K. koreana WorldClim Climate-only 2.56 8.83 3.55 53.97 24.23 6.86 N/A N/A
K. koreana WorldClim Full 15.55 0.01 0.81 13.11 24.36 18.23 7.26 20.65
K. koreana CHELSA Climate-only 1.04 32.73 25.19 5.55 32.53 2.96 N/A N/A
K. koreana CHELSA Full 10.31 29.65 2.21 4.68 28.76 0.63 2.37 21.37

Fig. 2  Spatial predictions of current habitat suitability for Onychodactylus koreanus (A) and Karsenia koreana (B) based on different climatic data sources 
(WorldClim vs. CHELSA) and predictor variable sets. The models for each species were calibrated separately using WorldClim and CHELSA bioclimatic 
variables. For the “full” models, slope and forest cover variables were added to the bioclimatic variables
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based on the climate-only model, although the predicted 
extent of suitable habitats in DPR Korea was broader in 
the full model.

The climate-only ENMs for K. koreana based on 
CHELSA data also had adequate predictive performance 
and a low degree of model overfitting (CBI = 0.839; 
AUCTEST = 0.849; AUCDIFF = 0.020; OR10 = 0.109; 
Table 1). When compared to the null ENMs, the climate-
only empirical model performed significantly better 
(p < 0.001 for both CBI and AUCTEST; Table  1). The cli-
mate-only model based on CHELSA data predicted suit-
able habitats along the central and southwestern parts of 
R Korea, as well as along the eastern coast of the Korean 
Peninsula (Fig. 2B; Supplementary Fig. 1B). The predicted 
area of suitable habitats based on the full model differed 
considerably from the prediction based on the climate-
only model. For example, the full model predicted a much 
broader area of suitable habitats within DPR Korea, while 
the suitable habitats based on the climate-only model 
were limited to the eastern coast (Fig. 2B; Supplementary 
Fig. 1B).

For the climate-only model based on WorldClim data, 
the two most important variables were precipitation of 
the wettest month (bio13) and precipitation of the dri-
est month (bio14). However, temperature seasonality 
(bio4) and precipitation of the driest month (bio14) were 
the two most important variables for the climate-only 
model based on CHELSA data. For the full model based 
on WorldClim data, precipitation of the driest month 
(bio14) and slope were the two most important vari-
ables, whereas temperature seasonality (bio4) and pre-
cipitation of the driest month (bio14) were the two most 
important variables for the full model based on CHELSA 
data. See Table  2 for the importance of each variable 
based on permutation importance, and Supplementary 
Table 2 for variable importance values based on percent 
contribution.

Hindcasting ENMs of O. koreanus
According to the hindcasted ENMs of O. koreanus based 
on WorldClim data (Fig. 3A), low to intermediate levels 
of habitat suitability were predicted at mPWP in north-
eastern China, the southern part of the Russian Far East, 
and the northeastern and eastern Korean Peninsula. 
At MIS19, areas of high habitat suitability were located 
along the eastern coast and northwestern part of the 
Korean Peninsula and Japan. The overall extent of highly 
suitable areas decreased somewhat during the LIG, but 
then expanded significantly during the LGM, with highly 
suitable areas covering the western and southern coasts 
of the Korean Peninsula, Japan, and the Yellow Sea basin. 
The habitat suitability along the eastern mountain ranges 
in the Korean Peninsula, however, was low during LGM. 
During the MH, the areas of high habitat suitability were 

located along the major mountain ranges of the Korean 
Peninsula, similar to the prediction under current cli-
matic conditions. The MESS results suggest higher 
extrapolation risk in regions corresponding to the north-
ern part of the Korean Peninsula and northeastern China 
compared to the southern part of the Korean Peninsula, 
which generally showed low to intermediate extrapola-
tion risk. The extrapolation risk in this region is greatest 
at LIG (Supplementary Fig. 2).

The hindcasted ENMs of O. koreanus based on 
CHELSA data showed similar trends of changes in habi-
tat suitability through time (Fig. 3A). Nevertheless, there 
were some notable differences between predictions based 
on the two different climatic datasets. For example, habi-
tat suitability in the northern part of the Korean Penin-
sula, northeastern China, and the Russian Far East was 
higher during the mPWP in CHELSA-based prediction 
compared to the WorldClim-based prediction. During 
the LIG, predicted habitat suitability across the Korean 
Peninsula was higher overall for the CHELSA-based pre-
diction compared to the WorldClim-based prediction. 
On the other hand, habitat suitability across the Korean 
Peninsula at LGM was lower in the CHELSA-based pre-
diction compared to the WorldClim-based prediction. 
The MESS results based on CHELSA data showed con-
siderably lower extrapolation risk across the landscape 
compared to the WorldClim data (Supplementary Fig. 2).

Hindcasting ENMs of K. koreana
According to the hindcasted ENMs of K. koreana based 
on the WorldClim data (Fig.  3B), habitat suitability was 
high across most of the Korean Peninsula and Japan at 
mPWP. However, habitat suitability within the Korean 
Peninsula decreased significantly at MIS19, with highly 
suitable habitats remaining on the eastern and southern 
coasts of the region. At LIG, the predicted habitat suit-
ability was low across most of the projection area, with 
the exception of a small area in Japan. At LGM, areas 
with high suitability were found between the Korean 
Peninsula and Japan, along the contemporary Tsushima 
Strait and the western coast of Japan, but habitat suit-
ability was again low across most of the projection area. 
At MH, highly suitable habitats were predicted on the 
eastern and southwestern mountain ranges of the Korean 
Peninsula. The MESS results showed higher extrapola-
tion risk in the northern part of the Korean Peninsula 
and northeastern China compared to the southern part 
of the Korean Peninsula, which generally showed low to 
intermediate extrapolation risk (Supplementary Fig. 2).

The hindcasted ENMs of K. koreana based on CHELSA 
data (Fig. 3B) generally showed contrasting trends from 
those based on WorldClim data. For example, at mPWP, 
CHELSA-based ENMs predicted high habitat suitability 
across broad areas of the Korean Peninsula and Japan, 
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but also in northeastern China and the Russian Far East. 
At MIS19, the overall habitat suitability was higher across 
the projection area compared to the WorldClim-based 
predictions, with CHELSA-based ENMs predicting 
broad areas of highly suitable habitats across the cen-
tral part of the Korean Peninsula. The CHELSA-based 
model predicted an expansion of highly suitable habitats 
at LIG, contrary to the WorldClim-based prediction. At 
LGM, however, the CHELSA-based model predicted a 
drastic decrease in suitable habitats, with an almost com-
plete disappearance of highly suitable habitats across 
the Korean Peninsula, similar to the WorldClim-based 
prediction. At MH, areas of high habitat suitability were 
predicted along the eastern and southwestern mountain 

ranges of the Korean Peninsula, similar to the World-
Clim-based prediction. However, the overall extent of 
highly suitable areas was broader for the CHELSA-based 
prediction. The MESS results based on CHELSA data 
showed considerably lower extrapolation risk across the 
landscape compared to the WorldClim data (Supplemen-
tary Fig. 2).

Influence of climatic data sources on ENMs
For O. koreanus, the differences in climatic values 
between WorldClim and CHELSA data were significant 
for the annual mean temperature (bio1; W = 11,392.5; 
p < 0.001; Fig.  4A), temperature seasonality (bio4; 
W = 29,109; p < 0.001; Fig.  4A), annual precipitation 

Fig. 3  Ecological niche models of Onychodactylus koreanus (A) and Karsenia koreana (B) hindcasted to the climatic conditions of the Plio-Pleistocene. The 
abbreviated names of time periods are as follows: mid-Pliocene Warm Period (mPWP; 3.205 Ma), Marine Isotope Stage 19 (MIS19; 787 Ka), Last Interglacial 
(LIG; 130 Ka), Last Glacial Maximum (LGM; 21 Ka), and mid-Holocene (MH; ca. 6.3 Ka). For each species, the upper panel represents model transfers from 
WorldClim-based models, and the lower panel represents model transfers from CHELSA-based models. Note the contrasting predictions depending on 
the initial climatic data used for model calibration
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(bio12; W = 13,567.5; p < 0.001; Fig.  4A), precipitation of 
the wettest month (bio13; W = 15,312; p = 0.038; Fig. 4A), 
and precipitation seasonality (bio15; W = 21,091; 
p < 0.001; Fig.  4A). On the other hand, the difference 
between the values of precipitation of the driest month 
(bio14; W = 17,105; p = 0.717; Fig. 4A) was not significant. 
For K. koreana, the differences in climatic values between 
WorldClim and CHELSA data were significant for all six 
variables. See Supplementary Table 3 for the full results 
of Mann-Whitney U tests.

When the difference between WorldClim and CHELSA 
bioclimatic layers were visualized spatially (Supplemen-
tary Fig.  3), CHELSA had higher values of temperature 
seasonality (bio4) along the northeastern coast of the 
Korean Peninsula, whereas WorldClim had higher val-
ues along the mountains of the peninsula. The values for 
annual precipitation (bio12) and precipitation of wet-
test month (bio13) were higher in CHELSA in central 
and northwestern regions of the Korean Peninsula than 
WorldClim. The values for precipitation of driest month 
(bio14) were higher in CHELSA in the mountains along 

the eastern coast of the Korean Peninsula, whereas 
WorldClim had higher values in southeastern part of 
the peninsula. The values for precipitation seasonality 
(bio15) were higher in CHELSA across broad regions of 
the Korean Peninsula, including the northwestern moun-
tains and northeastern coasts.

When the differences in current habitat suitability pre-
dictions between WorldClim- and CHELSA-based mod-
els were visualized spatially for O. koreanus, the regions 
of greatest difference were in the mountains of northern 
Korean Peninsula for both climate-only and full models 
(Fig.  4B). For K. koreana, the climate-only predictions 
had a high level of difference in the northwestern moun-
tains, eastern mountains, western lowlands, and south-
western mountains of the Korean Peninsula (Fig. 4C). For 
the full model, the regions of high difference were identi-
fied in the eastern mountains (Fig. 4C).

Based on the overall comparisons between WorldClim-
based and CHELSA-based predictions, the highest level 
of difference between the two sets of predictions was at 
LIG for O. koreanus, followed by LGM, MH, mPWP, and 

Fig. 4  The differences in model predictions and climate values across occurrence points of Onychodactylus koreanus and Karsenia koreana. A Compari-
sons of the range of climatic values between WorldClim and CHELSA datasets. The values were extracted from the occurrence points of each species 
(n = 187 for O. koreanus and n = 137 for K. koreana). The level of statistical significance based on Mann-Whitney U-tests are denoted with the following sym-
bols above the boxplots – ns: p > 0.05, *: p ≤ 0.05, **: p ≤ 0.01, ***: p ≤ 0.001, ****: p ≤ 0.0001. B Differences in spatial predictions between WorldClim-based 
and CHELSA-based models for O. koreanus. C Differences in spatial predictions between WorldClim-based and CHELSA-based models for K. koreana. In (B) 
and (C), the CHELSA-based models used the same parameters as WorldClim-based models
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MIS19 (Table 3). The difference was the lowest for pre-
diction under the current climate. For K. koreana, the 
prediction difference was also highest at LIG, followed by 
LGM, prediction under the current climate, MH, MIS19, 
and mPWP (Table 3). When the spatial information is 
incorporated using Schoener’s D, the level of disagree-
ment between WorldClim-based and CHELSA-based 
predictions was highest at LGM for both species. For O. 
koreanus, this was followed by MH, LIG and MIS19 (both 
having the same level of difference), mPWP, and predic-
tion under the current climate. For K. koreana, mPWP 
had the highest level of prediction difference after LGM, 
followed by LIG, MH, MIS19, and prediction under the 
current climate. See Table 3 for the prediction difference 
values for each species, method, and time period.

For both species, the CHELSA-optimized models had 
comparable evaluation metrics compared to the mod-
els calibrated with parameters optimized for WorldClim 
data (Supplementary Table 4). The CHELSA-optimized 
predictions of current habitat suitability were also highly 
similar to CHELSA-based predictions with parameters 
optimized for the WorldClim data (Supplementary 
Fig.  4). When CHELSA-optimized models were hind-
casted to Plio-Pleistocene climate conditions, however, 
the predictions for O. koreanus had a broader area of 
intermediate habitat suitability across all time periods 
than predictions from the CHELSA-based model with 
parameters optimized for the WorldClim data (Supple-
mentary Fig.  5). For K. koreana, the predicted area of 
high habitat suitability was generally smaller in CHELSA-
optimized hindcast predictions than predictions from the 
CHELSA-based model with parameters optimized for 
the WorldClim data (Supplementary Fig. 5).

Contemporary niche overlaps
The p-values for the background tests are shown as p12 
for the tests comparing the E-space of O. koreanus (spe-
cies 1) to the randomly shifted E-space of K. koreana 
(species 2), and p21 for the tests comparing the E-space of 
K. koreana to the randomly shifted E-space of O. korea-
nus. The niche overlap test (NOT) based on WorldClim 

data resulted in a nonsignificant identity test (p > 0.05; 
Fig.  5A) and background tests (p12 > 0.05; p21 > 0.05; 
Fig. 5B), and Schoener’s D value calculated from the total 
available E-space was 0.19. When calculated only on the 
shared E-space, the NDT resulted in a significant iden-
tity test (p < 0.05; Fig. 5A) and nonsignificant background 
tests (p12 > 0.05; p21 > 0.05; Fig.  5B), with Schoener’s D 
value of 0.10. The nonsignificant NOT background sta-
tistic indicates that the E-space available for both species 
is similar and the significant NDT niche identity statis-
tic and nonsignificant NDT background metric indicates 
that there is evidence of niche divergence between O. 
koreanus and K. koreana ([68]; Fig. 5).

The NOT based on CHELSA data had Schoener’s D 
value of 0.32, and resulted in a nonsignificant identity 
test (p > 0.05; Fig.  5A). For background tests (Fig.  5B), 
the comparison of observed niche similarity to the over-
lap between the E-space of O. koreanus and the ran-
domly shifted E-space of K. koreana was nonsignificant 
(p12 > 0.05). However, the test was significant (p21 < 0.05) 
when the observed niche similarity was compared to the 
overlap between the E-space of K. koreana and the ran-
domly shifted E-space of O. koreanus. The NDT con-
ducted on CHELSA data had a Schoener’s D value of 0.36 
and a nonsignificant identity test result (p > 0.05; Fig. 5A). 
The background test was nonsignificant (p12 > 0.05) when 
observed niche similarity was compared to the overlap 
between the E-space of O. koreanus and the randomly 
shifted E-space of K. koreana. On the other hand, the 
test was significant (p21 < 0.05) when the observed niche 
similarity was compared to the E-space of K. koreana and 
the randomly shifted E-space of O. koreanus (Fig. 5B). As 
the niche identity tests were nonsignificant and the back-
ground tests were significant in only one direction for 
both NOT and NDT, the results indicate that the E-space 
available to the two species are similar and that the two 
species have equivalent niches ([68]; Fig. 5), contrary to 
the results based on the WorldClim data.

Table 3  Quantification of prediction differences between WorldClim- and CHELSA-based ENMs for Onychodactylus koreanus and 
karsenia koreana, based on the methods of Dubos et al. (2023) [17]. These are pairwise comparisons between WorldClim- and CHELSA-
based predictions per time period. The “overall” method is based on the absolute difference between the sum of raster pixel values 
of WorldClim- and CHELSA-based predictions divided by the sum of WorldClim-based prediction pixel values and then multiplied by 
100. On the other hand, the “spatial” method incorporates Spatial information based on schoener’s D metric. The values for the “spatial” 
method are represented as (1 - D) x 100. For both methods, higher values indicate higher disagreement between WorldClim- and 
CHELSA-based predictions for each time period
Species Method Current (%) MH (%) LGM (%) LIG (%) MIS19 (%) mPWP (%)
O. koreanus Overall 32 142 163 207 122 126
O. koreanus Spatial 20 35 47 32 32 22
K. koreana Overall 49 35 86 960 34 23
K. koreana Spatial 47 56 87 78 55 86



Page 13 of 19Shin et al. BMC Ecology and Evolution          (2025) 25:105 

Discussion
Ecological niche models and transferability
Our results demonstrate that the results of ENMs can 
sufficiently predict contemporary suitable habitats for O. 
koreanus and K. koreana. The predicted area of suitable 
habitats for O. koreanus was generally consistent with a 
previous ENM study, even with different model param-
eterizations and input variables [24]. On the other hand, 
the current range estimation for K. koreana predicted a 
broader area of suitable habitat compared to a previous 
study [32]. This is most likely the effect of correcting 
for spatial sampling bias through modified background 
point selection and adding occurrence points from the 
northern edge of the species’ known distribution. Nev-
ertheless, the prediction outputs were highly sensitive to 
input variable combinations (climate-only vs. full mod-
els) and climatic data sources (WorldClim vs. CHELSA), 
which were not tested in previous ENM studies on these 
species.

The uncertainties associated with climatic data choice 
are visualized when the distributions of climatic values 

at the species occurrence points are compared between 
WorldClim and CHELSA, where the range of values is 
considerably different between the two climate datasets 
for some variables (Fig.  4A). In addition, spatial visual-
ization of difference between WorldClim and CHELSA 
climate variables showed that several climate layers dif-
fered consistently in similar regions within the Korean 
Peninsula. For example, one notable pattern is that the 
CHELSA layers had higher values of temperature season-
ality (bio4), annual precipitation (bio12), precipitation of 
wettest month (bio13), and precipitation of driest month 
(bio14) in the eastern part of the Korean Peninsula, and 
higher annual precipitation (bio12), precipitation of wet-
test month (bio13), and higher precipitation seasonality 
(bio15) in the northwestern part of the Korean Peninsula. 
These two regions were where CHELSA-based models 
consistently predicted suitable habitats for K. koreana 
(Supplementary Fig.  1) and where the current habitat 
suitability predictions differed the most between World-
Clim- and CHELSA-based models (Fig. 4B - C). This sug-
gests that the difference between the two climate datasets 

Fig. 5  The results of niche analyses based on (A) niche identity and (B) background tests. The analyses were conducted separately for WorldClim and 
CHELSA data, within the framework of the niche overlap test (NOT) and niche divergence test (NDT) of Brown & Carnaval (2019) [68]. The degree of niche 
overlap is based on Schoener’s D. For the background test, p12 designates the test p-value when the environmental space (E-space) of species 1 (Onycho-
dactylus koreanus) is compared to the randomly shifted E-space of species 2 (Karsenia koreana). Likewise, p21 designates the test p-value when the E-space 
of K. koreana is compared to the randomly shifted E-space of O. koreanus
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is likely driving the differences in outcome predictions 
and identifies the choice of climate dataset as a source of 
uncertainty in niche modeling.

While we show that the choice of climate dataset has 
an important effect on model predictions, the climate-
only ENMs failed to predict suitable habitats for these 
species during certain time periods of the Pleistocene 
(especially during LIG and LGM) regardless of the data 
source. This is in direct conflict with range formation his-
tories inferred from genetic data. For example, the results 
of Jeon et al. (2021) [31] imply the persistence of relict K. 
koreana populations in the southern part of the Korean 
Peninsula, followed by a relatively recent, unidirectional 
northward dispersal forming the current geographic 
distribution. However, this pattern is not supported by 
hindcasted ENMs for some time periods (e.g., LIG and 
LGM). While regions of non-zero suitability are present 
for these time periods, these areas are small and patchily 
distributed. If we consider these predictions to be simi-
lar to the actual distributions during these time periods, 
we would expect to see a demographic signatures of rapid 
population expansion following the expansion of suitable 
habitats towards the present. Such a pattern is not sup-
ported from genetic data [31]. The same conflict holds for 
O. koreanus, which likely persisted within the mountains 
of the Korean Peninsula during the Pleistocene based 
on genetic data [23]. Furthermore, the hindcasted pre-
dictions appear to be sensitive to climatic data sources 
initially used to fit the current ENMs (WorldClim vs. 
CHELSA), with predictions for the same time period 
showing contrasting results (e.g., LIG predictions for K. 
koreana).

The failure of hindcasted ENMs to predict suitable 
Pleistocene habitats may stem from methodological 
approaches used in our ENMs. Compiling occurrence 
datasets from different sources, each with different coor-
dinate accuracy and bias, as well as temporal and spatial 
resolutions of occurrence and environmental datasets, 
can all influence model outcomes [12–14, 70], and failure 
to account for these factors may lead to spurious model 
predictions. For our purposes, it was necessary to com-
pile occurrence data from multiple sources, as no single 
source could provide a representative sampling of species 
ranges for either species. We nevertheless ascertained 
the accuracy of occurrence points whenever possible, by 
visualizing the distribution of occurrence points across 
the landscape, matching them with known distributions, 
and filtering out potentially inaccurate records. Consider-
ing the data filtering methods and prediction outcomes, 
the compilation of occurrence points from different 
sources is unlikely to be the cause of poor transferability.

Regarding the temporal resolution, it was not possible 
to fully match our occurrence datasets exactly to the 
timeframes of the climatic data. However, this mismatch 

in temporal resolution between occurrence and climatic 
data does not seem to have adverse effects on model 
performance. For example, we were not able to match 
the temporal resolution between the WorldClim dataset 
(1970–2000 climatic averages) and occurrence points of 
K. koreana because the species was formally described 
only in 2005 [25]; except for three records based on his-
torical specimens [71, 72], all other occurrence points 
were recorded after 2005. The CHELSA climatology, 
spanning climate data from 1979 to 2013, better matches 
the occurrence timeframe of K. koreana. Despite this, 
WorldClim-based models outperformed CHELSA-based 
models in terms of consistency with the known distribu-
tion of the species, with all the other statistical metrics 
having comparable values between the two model sets 
(Table 1). The same holds for O. koreanus: the occurrence 
points for this species encompass even broader types of 
records, including literature-based data, georeferenced 
historical specimens, herpetological survey records, and 
citizen science data [24], spanning time periods that are 
much broader than the coverage of either climatic data-
set. Nevertheless, the models could sufficiently predict 
the known current distribution of this species.

The spatial resolution of our input raster data also does 
not seem to be the root cause of poor transferability 
either. We used statistical downscaling of the raw 5  km 
PaleoClim dataset to match its spatial resolution with 
the contemporary climate datasets used for calibration. 
However, additional experiments with ENMs calibrated 
on 5  km resolution WorldClim/CHELSA datasets and 
hindcasting them to raw 5  km PaleoClim dataset still 
resulted in poor model transferability (not shown). Simi-
larly, hindcasting ENMs calibrated with a 1  km World-
Clim/CHELSA dataset to 1 km paleoclimate at LIG [59] 
also resulted in failure to predict suitable habitats during 
this time period (not shown).

In addition, potential suboptimal parameterization 
of CHELSA-based models due to the use of parameters 
optimized for WorldClim data could be another reason 
for poor transferability in CHELSA-based models. We 
tested this by running a separate model parameter tuning 
for CHESLA data and generated current and hindcasted 
predictions. For both species, the predictions of current 
habitat suitability were similar between CHELSA-based 
models that used parameters optimized for WorldClim 
data and CHELSA-based models with parameters specif-
ically optimized for CHELSA dataset. On the other hand, 
the hindcasted predictions from CHELSA-based mod-
els with parameters optimized for CHELSA data were 
different those from CHELSA-based models that used 
parameters optimized for WorldClim data. For example, 
CHELSA-optimized hindcast predictions for O. koreanus 
predicted broader areas of intermediate suitability than 
hindcast predictions based on WorldClim-optimized 
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paramters. Neverthelss, specifically optimizing model 
parameters for CHELSA data did not resolve poor model 
transferability. This is clearly demonstrated in model 
predictions for K. koreana, where the model still failed 
to predict suitable habitats in the Korean Peninsula dur-
ing the LGM despite specific parameter optimization 
for CHELSA data. These results suggest that, while the 
parameter specification do have an influence in output 
predictions, this is not necessarily a root cause of poor 
model transferability.

Thus, barring all these possibilities, we seek explana-
tions from ecological factors and fundamental limita-
tions of macroclimate-based correlative ENMs. Both 
O. koreanus and K. koreana are strict habitat specialists 
that are only found in heavily forested mountains [27]. 
Within these habitats, they utilize specific microhabi-
tats including rock piles, leaf litter, or cold streams (for 
O. koreanus). In such environments, the microclimates 
directly experienced by these animals can differ signifi-
cantly from the regional macroclimate [18]. Taking fine-
scale microclimate and physiologically relevant variables 
into account, therefore, is likely to generate more real-
istic estimations of habitat suitability [18, 73]. However, 
the ecology of both O. koreanus and K. koreana remains 
poorly studied, and physiologically important parameters 
for salamanders, such as rates of water loss and respira-
tion, are unknown. Therefore, further research on the 
ecophysiology of these species and mechanistic niche 
modeling approaches are the obvious next steps.

The need to incorporate microclimate-scale modeling 
capacity is exemplified in the behavior of our macrocli-
mate-based ENMs. Based on the importance of each 
environmental variable for ENMs, it appears that the 
hindcasted predictions for both species are largely driven 
by the most important variable in the initial model cali-
bration. For example, annual mean temperature (bio1) is 
disproportionately important in climate-only models of 
O. koreanus (Table 2). However, when the slope and for-
est cover variables were added, the importance of bio1 
decreased considerably. Therefore, a disproportionate 
impact of bio1 on the climate-only ENMs of O. korea-
nus seems to explain the apparent failure to predict suit-
able habitats for this species during LGM, considering 
the significantly colder climate of the Korean Peninsula 
during this time period [74, 75]. For K. koreana, tem-
perature seasonality (bio4) and/or precipitation extremes 
(bio13 and bio14) had high importance in current ENMs 
(Table  2). Considering that the climate of the Korean 
Peninsula during LGM was much colder and drier [74, 
75], the high importance of temperature and precipita-
tion variables is likely to be the reason for poor model 
transfer.

The goal of our study is not to denounce the values of 
correlative ENMs altogether. Indeed, correlative ENMs 

are powerful and robust tools for understanding many 
aspects of biogeography, evolution, paleontology, and 
invasion ecology [2, 76–78]. Rather, our aim is to cau-
tion the users of correlative ENMs against their blind 
applications without critical assessments of modeling 
aims, model assumptions, available data, and ecological 
information on target species. For example, directly asso-
ciating population trends estimated from genetic data 
with the increase/decrease of predicted habitat suitabil-
ity under the Pleistocene climate could lead to spurious 
conclusions if climatic data sources strongly influence the 
predictions. Therefore, studies seeking to complement 
the results from phylogeographic studies (e.g., Bayesian 
skyline plots) with hindcasted ENMs should carefully test 
the impacts of climatic data sources and select environ-
mental variables relevant to the target species as much 
as possible. Furthermore, the modeling protocols should 
follow the available best practices [57, 79].

Such cautions equally apply to studies that aim to 
estimate future suitable habitats under climate change. 
For example, previous studies have demonstrated that 
accounting for plasticity and other physiological param-
eters can produce more conservative predictions of spe-
cies response to future climate change compared to the 
conventional correlative ENMs [80–82]. Our previous 
studies on the potential response of O. koreanus and K. 
koreana to future climate changes predicted considerable 
range shifts with concomitant conservation implications 
[24, 32]. Considering the uncertainties and limitations 
associated with correlative ENMs, these conclusions 
should be re-evaluated and refined as better modeling 
capabilities, as well as additional ecological and ecophysi-
ological data, become available. On the other hand, fur-
ther testing of the influences of model parameterization, 
spatial and temporal resolutions, and alternative model-
ing approaches, such as ensemble modeling [83, 84] and 
minimum volume ellipsoids [85], and comparing these 
results to our MaxEnt-based outputs presented here 
could be useful avenues of methodological investigations.

Niche overlaps and range formation
We initially considered niche overlaps between O. korea-
nus and K. koreana as more likely than niche divergence 
at the macroclimatic scale based on generally similar hab-
itat requirements, overlapping geographic distributions, 
and broad sympatry between the two species. However, 
the results of niche analyses suggested that these tests 
are also sensitive to climatic data sources. In our case, 
this is likely due to the different ranges of climatic val-
ues between WorldClim and CHELSA datasets (Fig.  4), 
as well as data resolution. Also, while not directly related 
to the framework of the tests implemented here, niche 
analyses are scale-dependent [86]. For example, a previ-
ous study based on diet and stable isotope data suggests 
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trophic niche differentiation between O. koreanus and 
K. koreana [87], while niche overlap/divergence with 
respect to other variables (e.g., morphology, microhabi-
tat use) and scales remain poorly understood for these 
species. As these two species vary in key ecological char-
acteristics (e.g., morphology and life histories), detailed 
ecological studies investigating finer-scale habitat pref-
erences of these two species in regions of sympatry may 
yield further insights into patterns of niche overlaps and 
divergence. On the other hand, as numerous studies have 
employed niche analyses to test hypotheses on the range 
formations and niche evolution between species pairs 
[4, 88–90], the influence of climatic data sources on the 
results of these tests, scale dependence of niche estima-
tions, and subsequent impacts on interpretations warrant 
further investigation.

As it currently stands, it is difficult to gain detailed 
insights into the range formation processes of O. korea-
nus and K. koreana from ENMs. The apparent conflicts 
between model-based predictions and phylogeographic 
patterns based on genetic data are difficult to recon-
cile. To resolve this issue, further ecological studies, 
additional datasets, and improved modeling capacities 
are required to incorporate microclimatic, physiologi-
cal, and other non-climatic variables (e.g., topography) 
into the ENM framework. In addition, phylogeographic 
studies based on phylogenomic data could be fruitful 
avenues for future investigations. While whole-genome 
sequencing for salamanders remains challenging due to 
large genome size (but see [91]), reduced-representation 
genome sequencing methods can be readily applied to 
salamanders [92–95]. The results from such studies may 
also provide further resolutions to some of the puzzling 
patterns revealed by mtDNA-based phylogeography, 
such as geographically proximate populations possessing 
divergent haplotypes and populations separated by com-
plex mountain ranges sharing the same haplotypes [23, 
31]. For O. koreanus, studies using phylogenomic data 
may also provide insights into the processes of speciation 
between this species and a microendemic sister species, 
O. sillanus [96]. For K. koreana, additional fieldwork may 
uncover additional populations, especially in the poorly 
sampled and heavily forested northern mountain ranges. 
These efforts can benefit from predictions and ground 
validation based on fine-scale ENMs and environmental 
DNA [97, 98]. Overall, such integrative approaches will 
provide further insights into the evolutionary histories 
and biogeography of these unique and poorly understood 
lineages of salamanders.

Conclusion
Using two distantly related lungless salamanders found 
in broad sympatry and two popular climatic databases, 
we investigated the influences of climatic data choice 

on the outcomes of correlative niche model predictions 
and niche analyses. Our results demonstrate that, while 
the models can sufficiently predict contemporary dis-
tributions, the choice of input climate data source has 
a strong influence on model predictions. Despite the 
ability of these models to predict current distributions, 
Plio-Pleistocene range predictions failed to predict suit-
able habitats regardless of the input climate data, even 
though previous genetic studies suggested the persis-
tence of populations during this time period. The analy-
ses of niche overlaps and divergence were also sensitive 
to climatic data choice, leading to different conclusions 
depending on the input data source. Taken together, we 
conclude that the influence of input climatic data and 
limitations of macroclimate-based analyses can be major 
sources of uncertainties in model transfers and analyses 
of niche overlaps and divergence, especially when the 
species is likely buffered from large-scale environmen-
tal changes by microhabitat use. The impacts of climatic 
data choice on niche modeling and associated analyses 
thus warrant further investigations.
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