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Abstract

Background Ecological niche models (ENMs) and analyses of niche overlap/divergence have become popular
methods in ecology and evolutionary biology. These analyses rely on environmental data available from several
databases. However, the influence of data sources on these analyses is rarely tested. Here, we test the impact of
climatic data choice on the prediction of current and Plio-Pleistocene suitable habitats for two distantly related,

but broadly sympatric, salamanders endemic to the Korean Peninsula. We ran MaxEnt separately on WorldClim

and CHELSA climate data. We then hindcasted ENMs to five time periods of the Plio-Pleistocene, bracketing the
estimated intraspecific divergence times for these species. We then quantified the differences in predictions between
WorldClim- and CHELSA-based models. Also, given the sympatry and similar habitat requirements of the two species,
we tested for niche overlaps using niche identity and background tests and tested the sensitivity of the results to
climatic data choice.

Results The ENMs successfully predicted contemporary suitable habitats for the two species. However, the
predictions were highly sensitive to climatic data choice as well as variable combinations. The hindcasted ENMs
produced contrasting predictions depending on the choice of climatic dataset and failed to predict suitable habitats
for some Pleistocene time periods regardless of the climatic data choice. The niche analyses were also sensitive to
climatic data choice, with results suggesting either niche overlaps or divergence depending on the climatic dataset
used for the analyses.

Conclusions Our study highlights the influence of climatic data choice on the outcomes of ENMs and niche
analyses. Our results also underscore the limitations of macroclimate-based ENMs, especially when the species
is likely buffered from macroclimatic changes by microhabitat. We argue for the need for additional ecological,
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ecophysiological, and population genomic studies to better understand the range formation of these enigmatic

species.

Keywords Ecological niche modeling, Korean peninsula, Macroclimate, MaxEnt, Niche analyses, Salamander

Background

Correlative ecological niche models (ENMs) and analy-
ses of niche overlap/divergence have become hugely
popular methods in ecology and evolutionary biology.
With increasing data availability and computational
advancements, these methods have been widely applied
to answer questions in ecology, biogeography, evolution,
and conservation biology [1-5]. Both of these methods,
as implemented in popular software packages, generally
require the following data types: geographic coordinates
of species occurrence records, coordinates for absence
or background data, and environmental variables. Most
of these data can be obtained from public data sources
or sampled as part of the analyses. For example, environ-
mental data, and especially climatic data, for these anal-
yses are generally obtained from one of several popular
public databases, including WorldClim [6], CHELSA [7],
and ENVIREM [8].

Numerous studies investigated the effects of occur-
rence and absence/background point sampling and
model complexity on the model prediction outcomes
[9-14]. Relatively less attention has been given, however,
to the prediction uncertainties associated with the choice
of climatic data sources [15—17]. Different climatic data-
bases are generated using different methodological
approaches. The choice of climatic data, therefore, can
introduce significant uncertainties into model outcomes
and downstream interpretations [17]. The implications
of these uncertainties become greater when the models
are extrapolated to different environmental conditions
across time and space. Most studies select climatic data
from one of many available databases, but justifications
for selection are rarely provided. Given that one of the
primary applications of ecological niche modeling and
niche overlap/divergence analyses is spatiotemporal pro-
jections and the study of niche shifts, the influence of
climatic data choice on the outcomes of these analyses
needs to be better understood.

On the other hand, the resolution of available data and
species-specific ecology can result in genuine limitations
of ecological niche models to predict species distribu-
tions. For example, macroclimatic variables available
from databases such as WorldClim or CHELSA may not
be suitable to model suitable habitats of small, forest-
dwelling species that are buffered from macroclimatic
fluctuations and are likely more sensitive to microcli-
matic changes [18]. While mechanistic niche modeling
[19, 20] can produce more realistic predictions for these
species by accounting for ecophysiological factors and

microclimate, this method is usually more data-intensive
and, therefore, not applicable to many species that are in
a juxtaposition of poorly known ecology and lack of data.

In this study, we investigate the influence of climatic
data choice and limitations of ENMs in predicting the
current and past distributions of two distantly related
lungless salamander species endemic to the Korean Pen-
insula: the Korean Clawed Salamander (Onychodactylus
koreanus) and the Korean Crevice Salamander (Karsenia
koreana). Onychodactylus koreanus is a hynobiid sala-
mander with a biphasic life cycle and a prolonged aquatic
larval stage [21]. Both larvae and adults are strict habi-
tat specialists of forests and mountain streams [22-24].
Karsenia koreana is the only known Asian representative
of the family Plethodontidae [25], and unlike O. koreanus,
this species is fully terrestrial and has direct-developing
eggs [26]. It is also found strictly in forested areas adja-
cent to mountain streams [27].

While the geographic distributions of both species are
not fully characterized within the Korean Peninsula [28],
the two species occur in broad sympatry from the central
to southern part of the peninsula along a major moun-
tain range (Fig. 1). Based on previous mtDNA-based
phylogeographic studies, the current range of O. korea-
nus was most likely formed from a historical southward
dispersal of an ancestral lineage to the Korean Peninsula
[23]. This was likely followed by rapid diversification and
isolation along the mountains of the Korean Peninsula
between 1.6 and 2.7 Ma [23]. For K. koreana, the disper-
sal of ancestral lineages from North America through the
Bering land bridge around 65 Ma has been inferred based
on phylogenetic analyses [29, 30]. Following the Pleisto-
cene glacial period, the populations that persisted in the
southern part of the Korean Peninsula expanded their
ranges northward, followed by the isolation of genetically
distinct regional populations along the mountains of the
Korean Peninsula. Most of the intraspecific divergence in
this species occurred within 1 Ma [31].

Given the physiological similarity, distant evolutionary
relationships, broad sympatry, and apparent overlaps in
habitat use, understanding the processes of range forma-
tion in these species carries substantial biogeographical
and ecological significance. In this context, it is crucial
to understand the impacts of past climatic shifts on the
range formation processes of these species as both spe-
cies are lungless and likely sensitive to climate change
[24, 32]. This is especially relevant considering the influ-
ence of Quaternary climatic oscillations on current bio-
diversity [33]. Furthermore, geographic distributions
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Fig. 1 Geographic distribution and habitat of the Korean Clawed Salamander (Onychodactylus koreanus) and Korean crevice salamander (Karsenia ko-
reana). A The known geographic distributions of O. koreanus (blue dots) and K. koreana (yellow dots) across the Korean Peninsula. Note the overlapping
ranges of the two species in the central and southern parts of the peninsula. The geographic range of each species based on Borzée et al. (2024) [42] is
shown with polygons corresponding to the color of occurrence points. Note that the range polygons used here do not provide a complete representa-
tion of species ranges. B A representative forest habitat in the Republic of Korea, where both O. koreanus (C) and K. koreana (D) occur. Both species can be
found along the streams and adjacent forest floors with no apparent segregation in habitat types. Photographs in (B) - (D) and the map inset image of O.

koreanus were taken by Yucheol Shin, and the map inset image of K. koreana was taken by Amaél Borzée

and ecological niches are usually compared between
sister species or closely related species within the same
genus. These species, therefore, provide rare and interest-
ing opportunities to investigate responses of ecologically
and physiologically similar but distantly related species to
common climatic fluctuations.

While ENMs can complement phylogeographic stud-
ies by visualizing the shifts of potentially suitable habi-
tats over time, and niche analyses can provide insights
into contemporary niche overlaps given broad sympatry,
the influence of climatic data choice and associated
uncertainties should also be evaluated to avoid spurious
conclusions. Therefore, our study aims to address the fol-
lowing questions: (1) Can current environmental datas-
ets sufficiently predict the contemporary distributions of
O. koreanus and K. koreana given known distributions?
(2) Can contemporary ENMs predict suitable habitats
during the Quaternary, consistent with the population
demography estimated from genetic data? (3) Do these
species show patterns of niche overlaps given broad sym-
patry and similar habitat requirements? (4) What are the
influences of climatic data choice on the results of these
analyses?

Methods

Data Preparation

To generate ENMs for the two study species under cur-
rent environmental conditions, we obtained spatially rar-
efied occurrence dataset of O. koreanus from a previous
study (n=187; [24]), which was initially compiled from
survey records, Global Biodiversity Information Facil-
ity (GBIF), VertNet, and natural history museum data.
We compiled occurrence records of K. koreana from the
results of National Ecosystem Surveys (NES; accessed via
the Ecobank platform; [34]), a previous study by Jeon et
al. (2021) [31], and the GBIF (via the megaSDM package;
[35]), resulting in a total of 362 occurrence points. We
spatially rarefied this dataset to 137 occurrence points
using the “thinData” function of the SDMtune package
[36] in R v4.2.2 [37]. We note that our occurrence data-
sets compiled data from different biodiversity databases
and surveys, each with different data collection methods,
biases, and temporal and spatial coverages. For example,
the NES are standardized surveys conducted in speci-
fied surveys grids, whereas the GBIF data incorporates
various data types including non-standardized citizen
science observations and museum records. However,
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we justify the use of these datasets as this provided the
most comprehensive spatial coverage of occurrence
points within the known distributions of the two species.
We further compensated for the spatial sampling bias of
occurrence points using a modified background sampling
method (see below).

Although not fully characterized, the geographic dis-
tributions of O. koreanus and K. koreana are likely to
extend into the Democratic People’s Republic of Korea
(DPR Korea) based on the continuous distribution of
mountain ranges and forested habitats [28]. However,
the general paucity of reliable occurrence records for
these species from DPR Korea and the relative abun-
dance of occurrence points from the Republic of Korea
(R Korea) introduce a significant sampling bias towards R
Korea that cannot be compensated by the spatially thin-
ning of occurrence points alone. Therefore, we modified
the sampling of background points considering two lev-
els of spatial sampling bias in the occurrence datasets.
The first level (background set 1; BG1 hereafter) was
sampled from a kernel density surface generated from
pooled occurrence points of amphibians recorded from
across the Korean Peninsula, representing the overall
sampling effort for amphibians across the study area (see
[24] for specific methods). The amphibian occurrences
were obtained from GBIF, NES, and Borzée et al. (2021)
[28]. The second level (BG2) was sampled from a kernel
density surface generated from pooled occurrences of O.
koreanus and K. koreana, representing spatial sampling
effort constrained specifically to the two study species.
The generation of kernel density surfaces was conducted
using the R package MASS [38]. For each level of spatial
bias, we sampled three background sets with different
sample sizes (1 =5,000, n=10,000, n=15,000). Thus, we
used a total of six different background datasets (2 lev-
els of spatial bias x 3 different sample sizes) for model
testing.

For environmental data, we initially considered 22 vari-
ables: 19 bioclimatic variables from WorldClim (https:
//www.worldclim.org/; [6]), elevation, slope, and global
consensus raster layers for needleleaf forest, deciduous
broadleaf forest, and mixed/other forest types obtained
from the EarthEnv database (https://www.earthenv.org/;
[39]). We note that slope is a highly scale-dependent
variable and that salamanders may have different prefer-
ences for finer-scale slopes. Therefore, our application of
the slope layer here is to capture the general, larger-scale
habitat characteristics of these salamanders rather than
capturing finer scale habitat conditions. Also, because
these salamanders are generally associated with heavily
forested habitats, we merged the three forest cover lay-
ers with the “Mosaic to New Raster” tool in ArcGIS Pro
v2.6.0 (ESRI, Redlands, CA), using the “Max” mosaic
operator to assign a maximum percent forest cover value

Page 4 of 19

among overlapping forest cover layers. All raster layers
were in 1 km spatial resolution (=0.008333 dd) and were
masked to the geographic extent of the Korean Peninsula
using the raster R package [40]. We used the boundary
of the Korean Peninsula to define the model calibration
range because the distributions of these two species fall
within this area (e.g., regions in northeastern China adja-
cent to DPR Korea are inhabited by other species of Ony-
chodactylus and no other Asian plethodontid has been
reported outside of Korean Peninsula; [41, 42]). This
area thus represents the range of environmental condi-
tions suitable for these species. In addition, using alterna-
tive approaches such as alpha or convex hulls will result
in smaller calibration areas that cannot fully capture the
range of environmental conditions available to these
species.

From this set of 22 variables, we first removed five bio-
climatic variables not represented in the paleoclimatic
dataset used for hindcasting. These variables were mean
diurnal range (bio2), isothermality (bio3), maximum tem-
perature of the warmest month (bio5), minimum tem-
perature of the coldest month (bio6), and temperature
annual range (bio7). We then conducted a Pearson’s cor-
relation test on the remaining 17 variables and removed
highly correlated variables with | 7 | >0.8. This resulted in
the following set of eight environmental variables: annual
mean temperature (biol), temperature seasonality (bio4),
annual precipitation (bio12), precipitation of the wettest
month (bio13), precipitation of the driest month (bio14),
precipitation seasonality (biol5), forest cover, and slope.
Considering the known ecology of the species, we con-
sidered the selection of these variables to be appropri-
ate. The variable selection step was conducted with the R
package ntbox [43].

Model development

To estimate the current habitat suitability of O. koreanus
and K. koreana, we used the maximum entropy (MaxEnt;
[44]) algorithm and conducted extensive model testing
using the ENMeval R package (version 2.0; [45]). One of
the primary goals of this study was to transfer the cur-
rent model to historical climate conditions. However, no
matching topographic and vegetation raster data were
available for the time periods of model transfer and our
study area, and keeping the non-climatic variables con-
stant across model transfers was deemed unrealistic.
Therefore, we first generated current ENMs for both spe-
cies using only the bioclimatic variables (“climate-only
model” hereafter).

To do so, we considered six bioclimatic variables with
low multicollinearity and six background datasets (BG1,
BG2, each with three different sample sizes). For each
combination of climatic and background sets, we tested
combinations of 13 MaxEnt feature classes (L, Q, H, P,
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LQ, LB, QH, QP, HP, LQH, LQP, LQHP, LQHPT; where
L =Linear, Q = Quadratic, H=Hinge, P =Product) and 10
regularization multipliers ranging from 0.5 to 5 at a 0.5
increment. We evaluated the candidate models using a
4-fold hierarchical spatial checkerboard cross-validation,
implemented in the R package ENMeval with the “check-
erboard2” method [45]. We selected this data partitioning
scheme as spatial cross-validation methods are generally
recommended for model transfer [46, 47] and because it
produced a generally similar number of data points and
environmental representations across the four cross-val-
idation folds. All other data partitioning strategies, such
as the 4-fold spatial blocks, random k-fold partitioning,
and user-specified spatial blocks, produced irregular
allocation of data points and/or irregular environmen-
tal representation across the cross-validation folds. Fur-
thermore, clamping was used in all model runs to limit
extrapolation beyond the range of calibration dataset.

Thus, we tested a total of 3120 models for each species
(1 modeling algorithm x 2 levels of spatial bias correction
x 3 sets of background points x 4 cross-validation runs x
13 MaxEnt feature combinations x 10 regularization val-
ues). While AAICc is commonly used as a model selec-
tion criterion [48, 49], preliminary model selection using
this criterion resulted in the selection of models with
excessively high omission rates. Therefore, we selected
the optimal model for each species in a sequential fash-
ion by applying the lowest 10% omission rate (OR,,) as
a primary filtering criterion, the lowest AUCppe (dif-
ference between the area under the curve [AUC] values
calculated from training and testing data [AUCqpay -
AUCg¢r]; [50]) as a secondary filtering criterion, and the
highest AUC ¢t as a tertiary filtering criterion, thereby
minimizing omission and overfitting while maximiz-
ing predictive performance [51, 52]. Although the use
of AUC as an absolute measure of model performance
has been criticized for presence-background ENMs [53,
54], we used AUC as a relative measure of model perfor-
mance to compare a suite of candidate ENMs for each
species. In addition, we used the Continuous Boyce Index
(CBL [55]) as another measure of model performance.
We also visually inspected the output prediction maps to
assess the geographical consistency of predictions with
the known distributions of the two species.

Based on these criteria, the optimal model for O. kore-
anus was made with BG1 (with #»=10,000) and LQ fea-
tures combined with a regularization multiplier of 1.0.
For K. koreana, the optimal model was made with BG1
(with #=10,000) and an LP feature with a regularization
multiplier of 5.0. Finally, we tested the selected optimal
model for each species against the null ENMs [56] and
assessed whether the empirical ENMs significantly out-
perform the null ENMs based on CBI and AUC¢r. The
null ENMs were computed in 1,000 iterations using the
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“ENMnulls” function of the ENMeval package. For the
optimal model for each species, we assessed variable
importance through permutation importance and per-
cent contribution.

We also generated ENMs for both species by adding
two non-climatic variables (slope and forest cover) that
are relevant to species ecology to the six bioclimatic vari-
ables (“full model” hereafter) to test if the predictions
from climate-only models deviated considerably from
the full models. All models generated in this study were
in complementary log-log (cloglog; [44]) format, and we
used the WGS 84 coordinate reference system for all
geographic projections. The full details of ENMs can be
found in the ODMARP reporting protocol associated with
this study ([57, 58]; Supplementary Material 1).

Hindcasting ENMs

We transferred the optimal climate-only ENMs for O.
koreanus and K. koreana to five paleoclimatic models of
the Pliocene and Pleistocene, corresponding to the major
climatic events bracketing the intraspecific divergence
times of the two species estimated from genetic data [23,
31]. These time periods are: mid-Pliocene Warm Period
(mPWP; ca. 3.2 Ma), Marine Isotope Stage 19 (MIS19;
ca. 787 Ka), Last Interglacial (LIG; ca. 130 Ka), Last Gla-
cial Maximum (LGM; ca. 21 Ka), and Mid-Holocene
(MH; ca. 6 Ka). The paleoclimatic models were down-
loaded from PaleoClim (http://www.paleoclim.org/;
[59-61]) at the 5 km spatial resolution (=0.041666 dd).
To match the spatial resolution of current and paleocli-
matic data, we statistically downscaled the paleoclimatic
layers to 1 km spatial resolution using bilinear interpola-
tion, implemented with the “disaggregate” function of the
raster package. For each model transfer, we assessed the
extrapolation risk through Multivariate Environmental
Similarity Surface (MESS; [62]) computed in the R pack-
age ntbox [43].

Influence of climatic data sources on ENMs

To assess the effect of climatic data choice on the output
model predictions [17, 63], we repeated the modeling
steps outlined above by using the same set of six biocli-
matic variables downloaded from CHELSA (https://chel
sa-climate.org/; [7]). We note that conducting a separate
Pearson’s correlation test on CHELSA bioclimatic vari-
ables resulted in the selection of the same six variables as
the WorldClim-based selection. First, to directly compare
climate values between WorldClim and CHELSA data-
sets within the geographic ranges of our target species,
we extracted raster pixel values of the two datasets sepa-
rately from the occurrence points of O. koreanus and K.
koreana. For each species, and separately for each biocli-
matic variable, we conducted the Mann-Whitney U-test
to test if climatic values differed between datasets. To
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spatially visualize the difference between the WorldClim
and CHELSA bioclimatic variables, we subtracted the
CHELSA rasters from WorldClim rasters. Thus, in these
“difference rasters,” pixels with positive values indicate
higher values in WorldClim layers and pixels with nega-
tive values indicate regions where the CHELSA layers
had higher values.

Next, we fitted the same optimal model for both spe-
cies (LQ 1.0 for O. koreanus and LP 5.0 for K. koreana)
but using the CHELSA bioclimatic variables. We gener-
ated both climate-only and full models and then spatially
visualized the areas in which the WorldClim-based and
CHELSA-based models differed in current habitat suit-
ability predictions. We then repeated model transfer
with the CHELSA-based climate-only models. To quan-
tify the difference between spatial predictions based on
WorldClim and CHELSA data, we followed the method
provided by Dubos et al. (2023) [17], using the following
equation slightly modified from that study:

I>° Pwortactimj — 2 PorEeLnsajl < 100

Z PWorldClimj

Here, Py, jaciim; and Pcyp g4 denote the estimated suit-
ability score of a given raster pixel j in predictions based
on WorldClim and CHELSA data, respectively. There-
fore, this method quantifies the overall percentage dif-
ference between a pair of model predictions relative to
the baseline prediction (WorldClim-based predictions in
this case) across the entire area of projection for a given
time period, with a higher level of difference indicating a
stronger effect of climate data source in causing the dif-
ference in predictions [17].

In addition, following Dubos et al. (2023) [17], we com-
puted the Schoener’s D overlap between WorldClim-
based and CHELSA-based model predictions to account
for spatial information. The Schoener’s D index ranges
from O to 1, where a value closer to 1 indicates higher
spatial similarity between a pair of predictions and thus a
lower effect of climatic data source. We used the follow-
ing equation to calculate Schoener’s D [64, 65]:

1
D(pm py) =1- 52 |Pz; — Py;

3

As originally defined for the application of Schoener’s D
to ENM predictions, p,; (or p,,) denotes the estimated
suitability value of a grid cell i for the ENM prediction of
species X (or Y) [65]. In the context of our analysis, X and
Y correspond to the prediction based on WorldClim and
CHELSA data, respectively. Furthermore, as Schoener’s
D is typically applied as an index of niche overlap, we
converted the calculated D values using (1 — D) x 100 to
the index of percent difference between predictions [17].
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The spatial overlap between model predictions was calcu-
lated using the “raster.overlap” function of the ENMTools
package [66].

While the use of same model parameters optimized for
WorldClim data for CHELSA data is convenient for the
purpose of model comparisons, it may lead to suboptimal
parameterization for the CHELSA dataset. Therefore, we
conducted separate model tuning runs for the CHELSA
dataset, using the same occurrence and background
datasets, data partitioning scheme, and testing the same
number of feature classes and regularization values for
each species. The optimal parameters for the CHELSA
data were HP feature classes and regularization multi-
plier of 4 for O. koreanus and LQ feature classes with a
regularization multiplier of 0.5 for K. koreana. We then
hindcasted these CHELSA-optimized models to test the
influence of CHELSA-specific parameter optimization
on model transfer results.

Contemporary niche overlaps

We conducted niche identity test and asymmetric back-
ground test to quantify and compare the ecological
niches of O. koreanus and K. koreana. The niche iden-
tity test uses randomized pseudoreplicates to generate
a null distribution of niche overlap values and compare
these values to the observed overlap value [65]. Here,
the randomization process is conducted by pooling the
occurrence points of a species pair and randomizing the
species identity. Next, new sets of occurrence points are
sampled from this randomized pool, retaining the origi-
nal number of occurrence points for each species [65].
The null hypothesis of niche identity is rejected when the
test result is statistically significant. On the other hand, in
the asymmetric background test, the null distribution is
generated by randomly shifting the occurrence points of
one species and calculating the niche overlap value with
the other species [65]. This null distribution is then com-
pared to the observed value of niche overlap. Therefore,
this test compares the niche of one species to the broader
environmental background of another species [65]. A
significantly higher niche overlap value indicates higher
niche similarity than expected. On the other hand, a sig-
nificantly lower niche overlap value may indicate niche
divergence between the species pair. We conducted the
background test in two directions, first comparing the
niche of O. koreanus to the environmental background of
K. koreana and then comparing the niche of K. koreana
to the environmental background of O. koreanus.

We implemented these analyses in environmental
space (E-space; [67, 68]) and within the framework of the
Niche Overlap Test (NOT) and Niche Divergence Test
(NDT) of Brown & Carnaval (2019) [68] to explicitly con-
sider the spatial distribution and availability of environ-
mental conditions. The NOT represents the identity and
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background statistics calculated over the total accessible
E-space within the geographic ranges of two species,
whereas NDT represents the identity and background
statistics calculated only within the accessible E-space
shared between two species [68]. We conducted these
analyses using the R package humboldt [68]. As input
environmental data, we used eight environmental vari-
ables (six climatic and two non-climatic variables) ini-
tially selected from Pearson’s correlation test (see above),
following the recommendations in the sumboldt package
documentation [69]. To test for the sensitivity of results
to climatic data choice, we separately conducted NOT
and NDT using the bioclimatic variables from World-
Clim and CHELSA and used Schoener’s D [64] as the
metric of niche overlap.

Results

Current ENMs of O. koreanus

The climate-only ENMs for O. koreanus based on World-
Clim data had low model overfitting and adequate pre-
dictive performance (CBI=0.909; AUCygsr = 0.787;
AUCppr = 0.014; OR,,=0.089; Table 1). In addition, the
comparison of climate-only empirical models against null
ENMs suggested that the empirical models have signifi-
cantly higher predictive abilities (p<0.001 for both CBI
and AUCggp; Table 1). The climate-only ENMs based
on WorldClim data predicted suitable habitats along the
major mountains of the Korean Peninsula. Overall, pre-
dictions from the full model did not deviate considerably
from the climate-only prediction (Fig. 2A; See Supple-
mentary Fig. 1A for binary presence/absence maps and
Supplementary Table 1 for conversion thresholds). How-
ever, the full model predicted suitable habitats for O.
koreanus in areas with the highest elevation within DPR
Korea, while the climate-only model predicted this area
to be unsuitable.

The climate-only ENMs for O. koreanus based on
CHELSA data also had low model overfitting and good
predictive performance (CBI=0.899; AUCrgr = 0.784;
AUCppr = 0.025; OR;(,=0.104; Table 1). The climate-
only empirical model significantly outperformed the null
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ENMs (p<0.001 for both CBI and AUCggy; Table 1). The
climate-only ENMs based on CHELSA data predicted
suitable habitats for O. koreanus across the major moun-
tains of the Korean Peninsula. However, unlike the pre-
dictions from WorldClim-based models, CHELSA-based
models predicted the entire geographic extent of DPR
Korea to be suitable for O. koreanus (Fig. 2A; See Sup-
plementary Fig. 1A for binary presence/absence maps
and Supplementary Table 1 for conversion thresholds).
Except for the smaller predicted area of suitable habitats
in DPR Korea, the prediction from the CHELSA-based
full model did not deviate significantly from the climate-
only prediction (Supplementary Fig. 1 A).

For both climate-only models based on WorldClim
and CHELSA data, mean annual temperature (biol) and
precipitation of the wettest month (biol3) were the two
most important variables. However, slope was the most
important variable for the full model based on World-
Clim data, and precipitation of the wettest month (bio14)
was the second most important variable. For the full
model based on CHELSA data, annual mean temperature
(biol) was the most important variable, and slope was
the second most important variable based on permuta-
tion importance. See Table 2 for the importance of each
variable based on permutation importance, and Supple-
mentary Table 2 for variable importance values based on
percent contribution.

Current ENMs of K. koreana

The climate-only ENMs for K. koreana based on World-
Clim data had good predictive performance and a low
degree of model overfitting (CBI=0.771; AUCrggr =
0.837; AUCppr = 0.011; OR,,=0.092; Table 1). The cli-
mate-only empirical model also performed significantly
better than the null ENMs (p<0.001 for both CBI and
AUCggp; Table 1). The climate-only ENMs based on
WorldClim data predicted suitable habitats of K. kore-
ana to be primarily in the central and southern parts of R
Korea, along the major mountains (Fig. 2B; Supplemen-
tary Fig. 1B). The suitable habitats predicted from the
full model did not deviate considerably from predictions

Table 1 Predictive performance of climate-only empirical and null maxent models for Onychodactylus koreanus and karsenia koreana

based on four evaluation metrics

Species Data Model CBI AUCqgsr AUC e OR,,
(Mean+SD) (Mean +£SD) (Mean+SD) (Mean+SD)
O. koreanus WorldClim Empirical 0.909+0.029 0.787+0.011 0.014+0.002 0.089+0.031
O. koreanus WorldClim Null 0.056+0.198 0.516+0.038 0.117+0.027 0.160+0.046
O. koreanus CHELSA Empirical 0.899+0.041 0.784+0.021 0.025+0.014 0.104+0.030
O. koreanus CHELSA Null 0.608+0.241 0.517+0.038 0.113+£0.027 0.170+0.044
K. koreana WorldClim Empirical 0.771£0.036 0.837+0.009 0.011+£0.007 0.092+0.088
K. koreana WorldClim Null 0.526+£0.248 0.520+£0.051 0.137+£0.027 0.035+0.044
K. koreana CHELSA Empirical 0.839+0.099 0.849+0.023 0.020+0.017 0.109+0.024
K. koreana CHELSA Null 0.111+£0.218 0.538+0.068 0.182+0.035 0.131+£0.091
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Fig. 2 Spatial predictions of current habitat suitability for Onychodactylus koreanus (A) and Karsenia koreana (B) based on different climatic data sources

(WorldClim vs. CHELSA) and predictor variable sets. The models for each species were calibrated separately using WorldClim and CHELSA bioclimatic
variables. For the “full”models, slope and forest cover variables were added to the bioclimatic variables

Table 2 The variable importance values for maxent models for Onychodactylus koreanus and karsenia koreana based on permutation
importance. The first and second most important variables for each model are highlighted in bold

Species Data Model Bio1 Bio4 Bio12 Bio13 Bio14 Bio15 Forest cover Slope
O. koreanus WorldClim Climate-only 7040 1.73 2.60 14.36 10.80 0.10 N/A N/A
O. koreanus WorldClim Full 5.99 3.55 048 131 25.72 1246 4.19 46.30
O. koreanus CHELSA Climate-only 62.57 0.54 7.34 18.55 1.68 9.31 N/A N/A
O. koreanus CHELSA Full 28.50 0 12.59 21.86 10.23 0.14 0.70 2597
K. koreana WorldClim Climate-only 256 8.83 3.55 5397 2423 6.86 N/A N/A
K. koreana WorldClim Full 15.55 0.01 0.81 13.11 2436 18.23 7.26 20.65
K. koreana CHELSA Climate-only 1.04 3273 25.19 5.55 3253 296 N/A N/A

K. koreana CHELSA Full 10.31 29.65 2.21 4.68 28.76 0.63 237 2137
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based on the climate-only model, although the predicted
extent of suitable habitats in DPR Korea was broader in
the full model.

The climate-only ENMs for K. koreana based on
CHELSA data also had adequate predictive performance
and a low degree of model overfitting (CBI=0.839;
AUCrper = 0.849; AUCp = 0.020; OR;,=0.109;
Table 1). When compared to the null ENMs, the climate-
only empirical model performed significantly better
(p<0.001 for both CBI and AUCg¢y; Table 1). The cli-
mate-only model based on CHELSA data predicted suit-
able habitats along the central and southwestern parts of
R Korea, as well as along the eastern coast of the Korean
Peninsula (Fig. 2B; Supplementary Fig. 1B). The predicted
area of suitable habitats based on the full model differed
considerably from the prediction based on the climate-
only model. For example, the full model predicted a much
broader area of suitable habitats within DPR Korea, while
the suitable habitats based on the climate-only model
were limited to the eastern coast (Fig. 2B; Supplementary
Fig. 1B).

For the climate-only model based on WorldClim data,
the two most important variables were precipitation of
the wettest month (biol3) and precipitation of the dri-
est month (biol4). However, temperature seasonality
(bio4) and precipitation of the driest month (bio14) were
the two most important variables for the climate-only
model based on CHELSA data. For the full model based
on WorldClim data, precipitation of the driest month
(bio14) and slope were the two most important vari-
ables, whereas temperature seasonality (bio4) and pre-
cipitation of the driest month (bio14) were the two most
important variables for the full model based on CHELSA
data. See Table 2 for the importance of each variable
based on permutation importance, and Supplementary
Table 2 for variable importance values based on percent
contribution.

Hindcasting ENMs of O. koreanus

According to the hindcasted ENMs of O. koreanus based
on WorldClim data (Fig. 3A), low to intermediate levels
of habitat suitability were predicted at mPWP in north-
eastern China, the southern part of the Russian Far East,
and the northeastern and eastern Korean Peninsula.
At MIS19, areas of high habitat suitability were located
along the eastern coast and northwestern part of the
Korean Peninsula and Japan. The overall extent of highly
suitable areas decreased somewhat during the LIG, but
then expanded significantly during the LGM, with highly
suitable areas covering the western and southern coasts
of the Korean Peninsula, Japan, and the Yellow Sea basin.
The habitat suitability along the eastern mountain ranges
in the Korean Peninsula, however, was low during LGM.
During the MH, the areas of high habitat suitability were
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located along the major mountain ranges of the Korean
Peninsula, similar to the prediction under current cli-
matic conditions. The MESS results suggest higher
extrapolation risk in regions corresponding to the north-
ern part of the Korean Peninsula and northeastern China
compared to the southern part of the Korean Peninsula,
which generally showed low to intermediate extrapola-
tion risk. The extrapolation risk in this region is greatest
at LIG (Supplementary Fig. 2).

The hindcasted ENMs of O. koreanus based on
CHELSA data showed similar trends of changes in habi-
tat suitability through time (Fig. 3A). Nevertheless, there
were some notable differences between predictions based
on the two different climatic datasets. For example, habi-
tat suitability in the northern part of the Korean Penin-
sula, northeastern China, and the Russian Far East was
higher during the mPWP in CHELSA-based prediction
compared to the WorldClim-based prediction. During
the LIG, predicted habitat suitability across the Korean
Peninsula was higher overall for the CHELSA-based pre-
diction compared to the WorldClim-based prediction.
On the other hand, habitat suitability across the Korean
Peninsula at LGM was lower in the CHELSA-based pre-
diction compared to the WorldClim-based prediction.
The MESS results based on CHELSA data showed con-
siderably lower extrapolation risk across the landscape
compared to the WorldClim data (Supplementary Fig. 2).

Hindcasting ENMs of K. koreana
According to the hindcasted ENMs of K. koreana based
on the WorldClim data (Fig. 3B), habitat suitability was
high across most of the Korean Peninsula and Japan at
mPWP. However, habitat suitability within the Korean
Peninsula decreased significantly at MIS19, with highly
suitable habitats remaining on the eastern and southern
coasts of the region. At LIG, the predicted habitat suit-
ability was low across most of the projection area, with
the exception of a small area in Japan. At LGM, areas
with high suitability were found between the Korean
Peninsula and Japan, along the contemporary Tsushima
Strait and the western coast of Japan, but habitat suit-
ability was again low across most of the projection area.
At MH, highly suitable habitats were predicted on the
eastern and southwestern mountain ranges of the Korean
Peninsula. The MESS results showed higher extrapola-
tion risk in the northern part of the Korean Peninsula
and northeastern China compared to the southern part
of the Korean Peninsula, which generally showed low to
intermediate extrapolation risk (Supplementary Fig. 2).
The hindcasted ENMs of K. koreana based on CHELSA
data (Fig. 3B) generally showed contrasting trends from
those based on WorldClim data. For example, at mPWP,
CHELSA-based ENMs predicted high habitat suitability
across broad areas of the Korean Peninsula and Japan,
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Fig.3 Ecological niche models of Onychodactylus koreanus (A) and Karsenia koreana (B) hindcasted to the climatic conditions of the Plio-Pleistocene. The
abbreviated names of time periods are as follows: mid-Pliocene Warm Period (mPWP; 3.205 Ma), Marine Isotope Stage 19 (MIS19; 787 Ka), Last Interglacial
(LIG; 130 Ka), Last Glacial Maximum (LGM; 21 Ka), and mid-Holocene (MH; ca. 6.3 Ka). For each species, the upper panel represents model transfers from
WorldClim-based models, and the lower panel represents model transfers from CHELSA-based models. Note the contrasting predictions depending on

the initial climatic data used for model calibration

but also in northeastern China and the Russian Far East.
At MIS19, the overall habitat suitability was higher across
the projection area compared to the WorldClim-based
predictions, with CHELSA-based ENMs predicting
broad areas of highly suitable habitats across the cen-
tral part of the Korean Peninsula. The CHELSA-based
model predicted an expansion of highly suitable habitats
at LIG, contrary to the WorldClim-based prediction. At
LGM, however, the CHELSA-based model predicted a
drastic decrease in suitable habitats, with an almost com-
plete disappearance of highly suitable habitats across
the Korean Peninsula, similar to the WorldClim-based
prediction. At MH, areas of high habitat suitability were
predicted along the eastern and southwestern mountain

ranges of the Korean Peninsula, similar to the World-
Clim-based prediction. However, the overall extent of
highly suitable areas was broader for the CHELSA-based
prediction. The MESS results based on CHELSA data
showed considerably lower extrapolation risk across the
landscape compared to the WorldClim data (Supplemen-
tary Fig. 2).

Influence of climatic data sources on ENMs

For O. koreanus, the differences in climatic values
between WorldClim and CHELSA data were significant
for the annual mean temperature (biol; W=11,392.5;
p<0.001; Fig. 4A), temperature seasonality (bio4;
W=29,109; p<0.001; Fig. 4A), annual precipitation
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Fig. 4 The differences in model predictions and climate values across occurrence points of Onychodactylus koreanus and Karsenia koreana. A Compari-
sons of the range of climatic values between WorldClim and CHELSA datasets. The values were extracted from the occurrence points of each species
(n=187 for O. koreanus and n= 137 for K. koreana). The level of statistical significance based on Mann-Whitney U-tests are denoted with the following sym-
bols above the boxplots — ns: p>0.05, *: p<0.05, **: p<0.01, ***: p<0.001, ****: p<0.0001. B Differences in spatial predictions between WorldClim-based
and CHELSA-based models for O. koreanus. C Differences in spatial predictions between WorldClim-based and CHELSA-based models for K. koreana. In (B)
and (C), the CHELSA-based models used the same parameters as WorldClim-based models

(biol2; W=13,567.5; p<0.001; Fig. 4A), precipitation of
the wettest month (biol3; W=15,312; p=0.038; Fig. 4A),
and precipitation seasonality (biol5; W=21,091;
p<0.001; Fig. 4A). On the other hand, the difference
between the values of precipitation of the driest month
(biol4; W=17,105; p=0.717; Fig. 4A) was not significant.
For K. koreana, the differences in climatic values between
WorldClim and CHELSA data were significant for all six
variables. See Supplementary Table 3 for the full results
of Mann-Whitney U tests.

When the difference between WorldClim and CHELSA
bioclimatic layers were visualized spatially (Supplemen-
tary Fig. 3), CHELSA had higher values of temperature
seasonality (bio4) along the northeastern coast of the
Korean Peninsula, whereas WorldClim had higher val-
ues along the mountains of the peninsula. The values for
annual precipitation (biol2) and precipitation of wet-
test month (biol3) were higher in CHELSA in central
and northwestern regions of the Korean Peninsula than
WorldClim. The values for precipitation of driest month
(bio14) were higher in CHELSA in the mountains along

the eastern coast of the Korean Peninsula, whereas
WorldClim had higher values in southeastern part of
the peninsula. The values for precipitation seasonality
(bio15) were higher in CHELSA across broad regions of
the Korean Peninsula, including the northwestern moun-
tains and northeastern coasts.

When the differences in current habitat suitability pre-
dictions between WorldClim- and CHELSA-based mod-
els were visualized spatially for O. koreanus, the regions
of greatest difference were in the mountains of northern
Korean Peninsula for both climate-only and full models
(Fig. 4B). For K. koreana, the climate-only predictions
had a high level of difference in the northwestern moun-
tains, eastern mountains, western lowlands, and south-
western mountains of the Korean Peninsula (Fig. 4C). For
the full model, the regions of high difference were identi-
fied in the eastern mountains (Fig. 4C).

Based on the overall comparisons between WorldClim-
based and CHELSA-based predictions, the highest level
of difference between the two sets of predictions was at
LIG for O. koreanus, followed by LGM, MH, mPWP, and
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MIS19 (Table 3). The difference was the lowest for pre-
diction under the current climate. For K. koreana, the
prediction difference was also highest at LIG, followed by
LGM, prediction under the current climate, MH, MIS19,
and mPWP (Table 3). When the spatial information is
incorporated using Schoener’s D, the level of disagree-
ment between WorldClim-based and CHELSA-based
predictions was highest at LGM for both species. For O.
koreanus, this was followed by MH, LIG and MIS19 (both
having the same level of difference), mPWP, and predic-
tion under the current climate. For K. koreana, mPWP
had the highest level of prediction difference after LGM,
followed by LIG, MH, MIS19, and prediction under the
current climate. See Table 3 for the prediction difference
values for each species, method, and time period.

For both species, the CHELSA-optimized models had
comparable evaluation metrics compared to the mod-
els calibrated with parameters optimized for WorldClim
data (Supplementary Table 4). The CHELSA-optimized
predictions of current habitat suitability were also highly
similar to CHELSA-based predictions with parameters
optimized for the WorldClim data (Supplementary
Fig. 4). When CHELSA-optimized models were hind-
casted to Plio-Pleistocene climate conditions, however,
the predictions for O. koreanus had a broader area of
intermediate habitat suitability across all time periods
than predictions from the CHELSA-based model with
parameters optimized for the WorldClim data (Supple-
mentary Fig. 5). For K. koreana, the predicted area of
high habitat suitability was generally smaller in CHELSA-
optimized hindcast predictions than predictions from the
CHELSA-based model with parameters optimized for
the WorldClim data (Supplementary Fig. 5).

Contemporary niche overlaps

The p-values for the background tests are shown as p;,
for the tests comparing the E-space of O. koreanus (spe-
cies 1) to the randomly shifted E-space of K. koreana
(species 2), and p,, for the tests comparing the E-space of
K. koreana to the randomly shifted E-space of O. korea-
nus. The niche overlap test (NOT) based on WorldClim
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data resulted in a nonsignificant identity test (p>0.05;
Fig. 5A) and background tests (p;,>0.05; p,;>0.05;
Fig. 5B), and Schoener’s D value calculated from the total
available E-space was 0.19. When calculated only on the
shared E-space, the NDT resulted in a significant iden-
tity test (p <0.05; Fig. 5A) and nonsignificant background
tests (p;5>0.05; p,;>0.05; Fig. 5B), with Schoener’s D
value of 0.10. The nonsignificant NOT background sta-
tistic indicates that the E-space available for both species
is similar and the significant NDT niche identity statis-
tic and nonsignificant NDT background metric indicates
that there is evidence of niche divergence between O.
koreanus and K. koreana ([68]; Fig. 5).

The NOT based on CHELSA data had Schoener’s D
value of 0.32, and resulted in a nonsignificant identity
test (p>0.05; Fig. 5A). For background tests (Fig. 5B),
the comparison of observed niche similarity to the over-
lap between the E-space of O. koreanus and the ran-
domly shifted E-space of K. koreana was nonsignificant
(p;2>0.05). However, the test was significant (p,; <0.05)
when the observed niche similarity was compared to the
overlap between the E-space of K. koreana and the ran-
domly shifted E-space of O. koreanus. The NDT con-
ducted on CHELSA data had a Schoener’s D value of 0.36
and a nonsignificant identity test result (p>0.05; Fig. 5A).
The background test was nonsignificant (p;,>0.05) when
observed niche similarity was compared to the overlap
between the E-space of O. koreanus and the randomly
shifted E-space of K. koreana. On the other hand, the
test was significant (p,; <0.05) when the observed niche
similarity was compared to the E-space of K. koreana and
the randomly shifted E-space of O. koreanus (Fig. 5B). As
the niche identity tests were nonsignificant and the back-
ground tests were significant in only one direction for
both NOT and NDT, the results indicate that the E-space
available to the two species are similar and that the two
species have equivalent niches ([68]; Fig. 5), contrary to
the results based on the WorldClim data.

Table 3 Quantification of prediction differences between WorldClim- and CHELSA-based ENMs for Onychodactylus koreanus and
karsenia koreana, based on the methods of Dubos et al. (2023) [17]. These are pairwise comparisons between WorldClim- and CHELSA-
based predictions per time period. The “overall”method is based on the absolute difference between the sum of raster pixel values

of WorldClim- and CHELSA-based predictions divided by the sum of WorldClim-based prediction pixel values and then multiplied by
100. On the other hand, the “spatial” method incorporates Spatial information based on schoener’s D metric. The values for the “spatial”
method are represented as (1 - D) x 100. For both methods, higher values indicate higher disagreement between WorldClim- and

CHELSA-based predictions for each time period

Species Method Current (%) MH (%) LGM (%) LIG (%) MIS19 (%) mPWP (%)
O. koreanus Overall 32 142 163 207 122 126

O. koreanus Spatial 20 35 47 32 32 22

K. koreana Overall 49 35 86 960 34 23

K. koreana Spatial 47 56 87 78 55 86
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Fig. 5 The results of niche analyses based on (A) niche identity and (B) background tests. The analyses were conducted separately for WorldClim and
CHELSA data, within the framework of the niche overlap test (NOT) and niche divergence test (NDT) of Brown & Carnaval (2019) [68]. The degree of niche
overlap is based on Schoener's D. For the background test, p,, designates the test p-value when the environmental space (E-space) of species 1 (Onycho-
dactylus koreanus) is compared to the randomly shifted E-space of species 2 (Karsenia koreana). Likewise, p,, designates the test p-value when the E-space

of K. koreana is compared to the randomly shifted E-space of O. koreanus

Discussion
Ecological niche models and transferability
Our results demonstrate that the results of ENMs can
sufficiently predict contemporary suitable habitats for O.
koreanus and K. koreana. The predicted area of suitable
habitats for O. koreanus was generally consistent with a
previous ENM study, even with different model param-
eterizations and input variables [24]. On the other hand,
the current range estimation for K. koreana predicted a
broader area of suitable habitat compared to a previous
study [32]. This is most likely the effect of correcting
for spatial sampling bias through modified background
point selection and adding occurrence points from the
northern edge of the species’ known distribution. Nev-
ertheless, the prediction outputs were highly sensitive to
input variable combinations (climate-only vs. full mod-
els) and climatic data sources (WorldClim vs. CHELSA),
which were not tested in previous ENM studies on these
species.

The uncertainties associated with climatic data choice
are visualized when the distributions of climatic values

at the species occurrence points are compared between
WorldClim and CHELSA, where the range of values is
considerably different between the two climate datasets
for some variables (Fig. 4A). In addition, spatial visual-
ization of difference between WorldClim and CHELSA
climate variables showed that several climate layers dif-
fered consistently in similar regions within the Korean
Peninsula. For example, one notable pattern is that the
CHELSA layers had higher values of temperature season-
ality (bio4), annual precipitation (biol2), precipitation of
wettest month (bio13), and precipitation of driest month
(bio14) in the eastern part of the Korean Peninsula, and
higher annual precipitation (bio12), precipitation of wet-
test month (biol3), and higher precipitation seasonality
(bio15) in the northwestern part of the Korean Peninsula.
These two regions were where CHELSA-based models
consistently predicted suitable habitats for K. koreana
(Supplementary Fig. 1) and where the current habitat
suitability predictions differed the most between World-
Clim- and CHELSA-based models (Fig. 4B - C). This sug-
gests that the difference between the two climate datasets
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is likely driving the differences in outcome predictions
and identifies the choice of climate dataset as a source of
uncertainty in niche modeling.

While we show that the choice of climate dataset has
an important effect on model predictions, the climate-
only ENMs failed to predict suitable habitats for these
species during certain time periods of the Pleistocene
(especially during LIG and LGM) regardless of the data
source. This is in direct conflict with range formation his-
tories inferred from genetic data. For example, the results
of Jeon et al. (2021) [31] imply the persistence of relict K.
koreana populations in the southern part of the Korean
Peninsula, followed by a relatively recent, unidirectional
northward dispersal forming the current geographic
distribution. However, this pattern is not supported by
hindcasted ENMs for some time periods (e.g., LIG and
LGM). While regions of non-zero suitability are present
for these time periods, these areas are small and patchily
distributed. If we consider these predictions to be simi-
lar to the actual distributions during these time periods,
we would expect to see a demographic signatures of rapid
population expansion following the expansion of suitable
habitats towards the present. Such a pattern is not sup-
ported from genetic data [31]. The same conflict holds for
O. koreanus, which likely persisted within the mountains
of the Korean Peninsula during the Pleistocene based
on genetic data [23]. Furthermore, the hindcasted pre-
dictions appear to be sensitive to climatic data sources
initially used to fit the current ENMs (WorldClim vs.
CHELSA), with predictions for the same time period
showing contrasting results (e.g., LIG predictions for K.
koreana).

The failure of hindcasted ENMs to predict suitable
Pleistocene habitats may stem from methodological
approaches used in our ENMs. Compiling occurrence
datasets from different sources, each with different coor-
dinate accuracy and bias, as well as temporal and spatial
resolutions of occurrence and environmental datasets,
can all influence model outcomes [12-14, 70], and failure
to account for these factors may lead to spurious model
predictions. For our purposes, it was necessary to com-
pile occurrence data from multiple sources, as no single
source could provide a representative sampling of species
ranges for either species. We nevertheless ascertained
the accuracy of occurrence points whenever possible, by
visualizing the distribution of occurrence points across
the landscape, matching them with known distributions,
and filtering out potentially inaccurate records. Consider-
ing the data filtering methods and prediction outcomes,
the compilation of occurrence points from different
sources is unlikely to be the cause of poor transferability.

Regarding the temporal resolution, it was not possible
to fully match our occurrence datasets exactly to the
timeframes of the climatic data. However, this mismatch
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in temporal resolution between occurrence and climatic
data does not seem to have adverse effects on model
performance. For example, we were not able to match
the temporal resolution between the WorldClim dataset
(1970-2000 climatic averages) and occurrence points of
K. koreana because the species was formally described
only in 2005 [25]; except for three records based on his-
torical specimens [71, 72], all other occurrence points
were recorded after 2005. The CHELSA climatology,
spanning climate data from 1979 to 2013, better matches
the occurrence timeframe of K. koreana. Despite this,
WorldClim-based models outperformed CHELSA-based
models in terms of consistency with the known distribu-
tion of the species, with all the other statistical metrics
having comparable values between the two model sets
(Table 1). The same holds for O. koreanus: the occurrence
points for this species encompass even broader types of
records, including literature-based data, georeferenced
historical specimens, herpetological survey records, and
citizen science data [24], spanning time periods that are
much broader than the coverage of either climatic data-
set. Nevertheless, the models could sufficiently predict
the known current distribution of this species.

The spatial resolution of our input raster data also does
not seem to be the root cause of poor transferability
either. We used statistical downscaling of the raw 5 km
PaleoClim dataset to match its spatial resolution with
the contemporary climate datasets used for calibration.
However, additional experiments with ENMs calibrated
on 5 km resolution WorldClim/CHELSA datasets and
hindcasting them to raw 5 km PaleoClim dataset still
resulted in poor model transferability (not shown). Simi-
larly, hindcasting ENMs calibrated with a 1 km World-
Clim/CHELSA dataset to 1 km paleoclimate at LIG [59]
also resulted in failure to predict suitable habitats during
this time period (not shown).

In addition, potential suboptimal parameterization
of CHELSA-based models due to the use of parameters
optimized for WorldClim data could be another reason
for poor transferability in CHELSA-based models. We
tested this by running a separate model parameter tuning
for CHESLA data and generated current and hindcasted
predictions. For both species, the predictions of current
habitat suitability were similar between CHELSA-based
models that used parameters optimized for WorldClim
data and CHELSA-based models with parameters specif-
ically optimized for CHELSA dataset. On the other hand,
the hindcasted predictions from CHELSA-based mod-
els with parameters optimized for CHELSA data were
different those from CHELSA-based models that used
parameters optimized for WorldClim data. For example,
CHELSA-optimized hindcast predictions for O. koreanus
predicted broader areas of intermediate suitability than
hindcast predictions based on WorldClim-optimized
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paramters. Neverthelss, specifically optimizing model
parameters for CHELSA data did not resolve poor model
transferability. This is clearly demonstrated in model
predictions for K. koreana, where the model still failed
to predict suitable habitats in the Korean Peninsula dur-
ing the LGM despite specific parameter optimization
for CHELSA data. These results suggest that, while the
parameter specification do have an influence in output
predictions, this is not necessarily a root cause of poor
model transferability.

Thus, barring all these possibilities, we seek explana-
tions from ecological factors and fundamental limita-
tions of macroclimate-based correlative ENMs. Both
O. koreanus and K. koreana are strict habitat specialists
that are only found in heavily forested mountains [27].
Within these habitats, they utilize specific microhabi-
tats including rock piles, leaf litter, or cold streams (for
O. koreanus). In such environments, the microclimates
directly experienced by these animals can differ signifi-
cantly from the regional macroclimate [18]. Taking fine-
scale microclimate and physiologically relevant variables
into account, therefore, is likely to generate more real-
istic estimations of habitat suitability [18, 73]. However,
the ecology of both O. koreanus and K. koreana remains
poorly studied, and physiologically important parameters
for salamanders, such as rates of water loss and respira-
tion, are unknown. Therefore, further research on the
ecophysiology of these species and mechanistic niche
modeling approaches are the obvious next steps.

The need to incorporate microclimate-scale modeling
capacity is exemplified in the behavior of our macrocli-
mate-based ENMs. Based on the importance of each
environmental variable for ENMs, it appears that the
hindcasted predictions for both species are largely driven
by the most important variable in the initial model cali-
bration. For example, annual mean temperature (biol) is
disproportionately important in climate-only models of
O. koreanus (Table 2). However, when the slope and for-
est cover variables were added, the importance of biol
decreased considerably. Therefore, a disproportionate
impact of biol on the climate-only ENMs of O. korea-
nus seems to explain the apparent failure to predict suit-
able habitats for this species during LGM, considering
the significantly colder climate of the Korean Peninsula
during this time period [74, 75]. For K. koreana, tem-
perature seasonality (bio4) and/or precipitation extremes
(bio13 and bio14) had high importance in current ENMs
(Table 2). Considering that the climate of the Korean
Peninsula during LGM was much colder and drier [74,
75], the high importance of temperature and precipita-
tion variables is likely to be the reason for poor model
transfer.

The goal of our study is not to denounce the values of
correlative ENMs altogether. Indeed, correlative ENMs
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are powerful and robust tools for understanding many
aspects of biogeography, evolution, paleontology, and
invasion ecology [2, 76-78]. Rather, our aim is to cau-
tion the users of correlative ENMs against their blind
applications without critical assessments of modeling
aims, model assumptions, available data, and ecological
information on target species. For example, directly asso-
ciating population trends estimated from genetic data
with the increase/decrease of predicted habitat suitabil-
ity under the Pleistocene climate could lead to spurious
conclusions if climatic data sources strongly influence the
predictions. Therefore, studies seeking to complement
the results from phylogeographic studies (e.g., Bayesian
skyline plots) with hindcasted ENMs should carefully test
the impacts of climatic data sources and select environ-
mental variables relevant to the target species as much
as possible. Furthermore, the modeling protocols should
follow the available best practices [57, 79].

Such cautions equally apply to studies that aim to
estimate future suitable habitats under climate change.
For example, previous studies have demonstrated that
accounting for plasticity and other physiological param-
eters can produce more conservative predictions of spe-
cies response to future climate change compared to the
conventional correlative ENMs [80-82]. Our previous
studies on the potential response of O. koreanus and K.
koreana to future climate changes predicted considerable
range shifts with concomitant conservation implications
[24, 32]. Considering the uncertainties and limitations
associated with correlative ENMs, these conclusions
should be re-evaluated and refined as better modeling
capabilities, as well as additional ecological and ecophysi-
ological data, become available. On the other hand, fur-
ther testing of the influences of model parameterization,
spatial and temporal resolutions, and alternative model-
ing approaches, such as ensemble modeling [83, 84] and
minimum volume ellipsoids [85], and comparing these
results to our MaxEnt-based outputs presented here
could be useful avenues of methodological investigations.

Niche overlaps and range formation

We initially considered niche overlaps between O. korea-
nus and K. koreana as more likely than niche divergence
at the macroclimatic scale based on generally similar hab-
itat requirements, overlapping geographic distributions,
and broad sympatry between the two species. However,
the results of niche analyses suggested that these tests
are also sensitive to climatic data sources. In our case,
this is likely due to the different ranges of climatic val-
ues between WorldClim and CHELSA datasets (Fig. 4),
as well as data resolution. Also, while not directly related
to the framework of the tests implemented here, niche
analyses are scale-dependent [86]. For example, a previ-
ous study based on diet and stable isotope data suggests
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trophic niche differentiation between O. koreanus and
K. koreana [87], while niche overlap/divergence with
respect to other variables (e.g., morphology, microhabi-
tat use) and scales remain poorly understood for these
species. As these two species vary in key ecological char-
acteristics (e.g., morphology and life histories), detailed
ecological studies investigating finer-scale habitat pref-
erences of these two species in regions of sympatry may
yield further insights into patterns of niche overlaps and
divergence. On the other hand, as numerous studies have
employed niche analyses to test hypotheses on the range
formations and niche evolution between species pairs
[4, 88—90], the influence of climatic data sources on the
results of these tests, scale dependence of niche estima-
tions, and subsequent impacts on interpretations warrant
further investigation.

As it currently stands, it is difficult to gain detailed
insights into the range formation processes of O. korea-
nus and K. koreana from ENMs. The apparent conflicts
between model-based predictions and phylogeographic
patterns based on genetic data are difficult to recon-
cile. To resolve this issue, further ecological studies,
additional datasets, and improved modeling capacities
are required to incorporate microclimatic, physiologi-
cal, and other non-climatic variables (e.g., topography)
into the ENM framework. In addition, phylogeographic
studies based on phylogenomic data could be fruitful
avenues for future investigations. While whole-genome
sequencing for salamanders remains challenging due to
large genome size (but see [91]), reduced-representation
genome sequencing methods can be readily applied to
salamanders [92-95]. The results from such studies may
also provide further resolutions to some of the puzzling
patterns revealed by mtDNA-based phylogeography,
such as geographically proximate populations possessing
divergent haplotypes and populations separated by com-
plex mountain ranges sharing the same haplotypes [23,
31]. For O. koreanus, studies using phylogenomic data
may also provide insights into the processes of speciation
between this species and a microendemic sister species,
O. sillanus [96]. For K. koreana, additional fieldwork may
uncover additional populations, especially in the poorly
sampled and heavily forested northern mountain ranges.
These efforts can benefit from predictions and ground
validation based on fine-scale ENMs and environmental
DNA [97, 98]. Overall, such integrative approaches will
provide further insights into the evolutionary histories
and biogeography of these unique and poorly understood
lineages of salamanders.

Conclusion

Using two distantly related lungless salamanders found
in broad sympatry and two popular climatic databases,
we investigated the influences of climatic data choice
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on the outcomes of correlative niche model predictions
and niche analyses. Our results demonstrate that, while
the models can sufficiently predict contemporary dis-
tributions, the choice of input climate data source has
a strong influence on model predictions. Despite the
ability of these models to predict current distributions,
Plio-Pleistocene range predictions failed to predict suit-
able habitats regardless of the input climate data, even
though previous genetic studies suggested the persis-
tence of populations during this time period. The analy-
ses of niche overlaps and divergence were also sensitive
to climatic data choice, leading to different conclusions
depending on the input data source. Taken together, we
conclude that the influence of input climatic data and
limitations of macroclimate-based analyses can be major
sources of uncertainties in model transfers and analyses
of niche overlaps and divergence, especially when the
species is likely buffered from large-scale environmen-
tal changes by microhabitat use. The impacts of climatic
data choice on niche modeling and associated analyses
thus warrant further investigations.
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